1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
11

The 10-lb block is pressed against the spring so as to compress it 2 ft when it is at a point A. If the plane is smooth, determi

ne the distance d, measured from the wall, to where the block strikes the ground. Neglect the size of the block.

Engineering
2 answers:
AleksAgata [21]3 years ago
8 0

Answer:

Distance from the wall is 35.99ft

Explanation:

Distance can be defined a numerical measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria.

In most cases, "distance from A to B" is interchangeable with "distance from B to A".

Please refer to attachment for the step by step solution

leva [86]3 years ago
5 0

Answer:

The distance measure from the wall = 36ft

Explanation:

Given Data:

w = 10

g =32.2ft/s²

x = 2

Using the principle of work and energy,

T₁ +∑U₁-₂ = T₂

0 + 1/2kx² -wh = 1/2 w/g V²

Substituting, we have

0 + 1/2 * 100 * 2² - (10 * 3) = 1/2 * (10/32.2)V²

170 = 0.15528V²

V² = 170/0.15528

V²     = 1094.796

V = √1094.796

V = 33.09 ft/s

But tan ∅ = 3/4

∅ = tan⁻¹3/4

   = 36.87°

From uniform acceleration,

S = S₀ + ut + 1/2gt²

It can be written as

S = S₀ + Vsin∅*t + 1/2gt²

Substituting, we have

0 = 3 + 33.09 * sin 36.87 * t -(1/2 * 32.2 *t²)

19.85t - 16.1t² + 3 = 0

16.1t² - 19.85t - 3 = 0

Solving it quadratically, we obtain t = 1.36s

The distance measure from the wall is given by the formula

d = VCos∅*t

Substituting, we have

d = 33.09 * cos 36. 87 * 1.36

d = 36ft

You might be interested in
Before taking off a plane travels at a speed of 1/4 km per second. The runaway is 5 km. How many seconds does it take the plane
Vikentia [17]

Answer:

1 5segundos

Explanation:

8 0
3 years ago
.a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy? b. A 1.6 m3 ves
vesna_86 [32]

Answer:

Part a: The volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b: The quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

Explanation:

Part a:

As per given data

m=2 kg

T=80 °C =80+273=353 K

Dryness=70% vapour =0.7

<em>From the steam tables at 80 °C</em>

Specific volume of saturated vapours=v_g=3.40527 m^3/kg

Specific volume of saturated liquid=v_f=0.00102 m^3/kg

Now the relation  of total specific volume for a specific dryness value is given as

                                  v=v_f+x(v_g-v_f)

Substituting the values give

v=v_f+x(v_g-v_f)\\v=0.00102+0.7(3.40527-0.00102)\\v_f=2.38399 m^3/kg

Now the volume of vessel is given as

v=\frac{V}{m}\\V=v \times m\\V=2.38399 \times 2\\V=4.7680 m^3

So the volume of vessel is 4.7680m^3.

Similarly for T=80 and dryness ratio of 0.7 from the table of steam

Pressure=P=47.4 kPa

Specific internal energy is given as u=1840 kJ/kg

So the total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=1840 \times 2\\U=3680 kJ

The total internal energy is 3680 kJ.

So the volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b

Volume of vessel is given as 1.6

mass is given as 2 kg

Pressure is given as 0.2 MPa or 200 kPa

Now the specific volume is given as

v=\frac{V}{m}\\v=\frac{1.6}{2}\\v=0.8 m^3/kg

So from steam tables for Pressure=200 kPa and specific volume as 0.8 gives

Temperature=T=120 °C

Quality=x=0.903 ≈ 90.3%

Specific internal energy =u=2330 kJ/kg

The total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=2330 \times 2\\U=4660 kJ

So the quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

5 0
3 years ago
4. An aluminum alloy fin of 12 mm thick, 10 mm width and 50 mm long protrudes from a wall, which is maintained at 120C. The amb
Minchanka [31]

Answer:

a) 84.034°C

b) 92.56°C

c) ≈ 88 watts

Explanation:

Thickness of aluminum alloy fin = 12 mm

width = 10 mm

length = 50 mm

Ambient air temperature = 22°C

Temperature of aluminum alloy is maintained at 120°C

<u>a) Determine temperature at end of fin</u>

m = √ hp/Ka

   = √( 140*2 ) / ( 12 * 10^-3 * 55 )

   = √ 280 / 0.66 = 20.60

Attached below is the remaining answers

7 0
3 years ago
Scanning the road can be thought of as
maw [93]

Answer:

Observational Skills

Explanation:

Observing the area also known as scanning the scene

5 0
3 years ago
Read 2 more answers
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
3 years ago
Other questions:
  • The Clausius inequality expresses which of the following laws? i. Law of Conservation of Mass ii. Law of Conservation of Energy
    8·1 answer
  • You're running an engine and seeing that it is exhausting blue smoke. Which is likely to
    9·1 answer
  • A certain metal has a resistivity of 1.68 × 10-8 Ω ∙ m. You have a long spool of wire made from this metal. If this wire has a d
    14·1 answer
  • You have been assigned to design an open cylindrical storage tank 4 meters tall with a diameter of 8 meters to be made out of A-
    13·1 answer
  • Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a
    6·1 answer
  • 3. What is a caliber (relate it to rockets)
    14·1 answer
  • (,,)=^3−^3+^3, where is the sphere ^2 + ^2 + ^2=^
    6·1 answer
  • For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the stiffness of the members is km = 2.
    14·1 answer
  • Contrast moral and immoral creativity and innovation<br>​
    12·1 answer
  • In a medical lab, Sandrine is working to isolate one element from a sample of liquid material. She uses a centrifuge, a machine
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!