Answer:
a) 53 MPa, 14.87 degree
b) 60.5 MPa
Average shear = -7.5 MPa
Explanation:
Given
A = 45
B = -60
C = 30
a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)
P1 = 53 MPa
Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)
P1 = -68 MPa
Tan 2a = C/{(A-B)/2}
Tan 2a = 30/(45+60)/2
a = 14.87 degree
Principal stress
p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa
b) Shear stress in plane
Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa
Average = (45-(-60))/2 = -7.5 MPa
Because of the skin depth effect, the current at high frequency tends to flow at very low depth from radius. Then at high frequency the effective cross section of the wire is narrower than at DC.
Fro example skin depth at 100 kHz is 0.206 mm (0.008”), a wire more thicker than AWG26 could be a waste of copper, better use a bunch of thin wire (Litz wire) to rise the Q factor.
Answer:
The condition does not hold for a compression test
Explanation:
For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension. The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.
<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test
Answer:
The reaction at support B
Rb= 235440N
The reaction at support C
RC= 29430N
Explanation : check attachment