I believe the correct answer is atmosphere (D).
Answer:
v_f = 3 m/s
Explanation:
From work energy theorem;
W = K_f - K_i
Where;
K_f is final kinetic energy
K_i is initial kinetic energy
W is work done
K_f = ½mv_f²
K_i = ½mv_i²
Where v_f and v_i are final and initial velocities respectively
Thus;
W = ½mv_f² - ½mv_i²
We are given;
W = 150 J
m = 60 kg
v_i = 2 m/s
Thus;
150 = ½×60(v_f² - 2²)
150 = 30(v_f² - 4)
(v_f² - 4) = 150/30
(v_f² - 4) = 5
v_f² = 5 + 4
v_f² = 9
v_f = √9
v_f = 3 m/s
i would say that the child with more linear speed is the cild that is 3 meters away from the center of the merry go round. because the child that is 0.5 meters from the center of the merry go round is less linear because the steering of the merry go round is started from the outer part of the merry go round so it would make more sense that the child that is 3 meters from the center of the merry go round would be more linear in speed.
hope this helps!
Answer: The color of candy cane
Explanation:
An independent variable is the Variable that the scientist changed in order to change the dependent variable. The scientist changes the color of the candy cane to test the rate at which they dissolve.
Answer:
False
Explanation:
The given statement "Two objects must be in contact for them to exert a force on each other" is not true as there are many types of forces that doesn't require being in contact for exerting a force.
One such example is the gravitational force acting between two bodies. Gravitational force is the force of pull with which a body pulls another body without being in contact.
For two bodies of masses 'M' and 'm' separated at a distance of 'R', the gravitational force is given as:
The gravitational force acts always act between bodies that have mass. The bodies are not in contact yet experience force.
Therefore, the given statement is false.