This year is 60 years since I learned this stuff, and one of the things I always remembered is the formula for the distance a dropped object falls:
D = 1/2 A T²
Distance = (1/2) (acceleration) (time²)
The reason I never forgot it is because it's SO useful SO often. You really should memorize it. And don't bury it too deep in your toolbox ... you'll be needing it again very soon. (In fact, if you had learned it the first time you saw it, you could have solved this problem on your own today.)
The problem doesn't tell us what planet this is happening on, so let's make it easy and just assume it's on Earth. Then the 'acceleration' is Earth gravity, and that's 9.8 m/s² .
In 5 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (5 sec)²
D = (4.9 m/s²) (25 sec²)
D = 122.5 meters
In 6 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (6 sec)²
D = (4.9 m/s²) (36 sec²)
D = 176 meters
Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Answer it ur self if u have internet
According to the position vs time graph, the <em>average</em> <em>velocity</em> of the motorcycle is the change in position divided by the change in time. Also, note that the slope is linear and positive throughout the 5 hours, it doesn't change direction.
Therefore, we have
Avg velocity = change in direction/change in time
Avg velocity = (150km - 30km)/(5h - 0h)
Avg velocity = 24km/hr south.
Anything less dense than water will float, like oil. Anything more dense than water will sink, like rock.