The answer is most likely A
Answer:
Explanation:
First of all we shall find the velocity at equilibrium point of mass 1.2 kg .
It will be ω A , where ω is angular frequency and A is amplitude .
ω = √ ( k / m )
= √ (170 / 1.2 )
= 11.90 rad /s
amplitude A = .045 m
velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s
= .5355 m /s
At middle point , no force acts so we can apply law of conservation of momentum
m₁ v₁ = ( m₁ + m₂ ) v
1.2 x .5355 = ( 1.2 + .48 ) x v
v = .3825 m /s
= 38.25 cm /s
Let new amplitude be A₁ .
1/2 m v² = 1/2 k A₁²
( 1.2 + .48 ) x v² = 170 x A₁²
( 1.2 + .48 ) x .3825² = 170 x A₁²
A₁ = .0379 m
New amplitude is .0379 m
Answer:
mass of an object
Explanation:
because mass of an object changes it’s force
Answer:
a) 1450watts
b) 564watts
c) 1.11
Explanation:
Power consumed = IV
I is the current rating
V is the operating voltage
If a blow-dryer and a vacuum cleaner each operate with a voltage of 120 V and the current rating of the blow-dryer is 12 A, while that of the vacuum cleaner is 4.7 A then their individual power rating is calculated thus;
a) For blow-dryer
Operating voltage = 120V
Its current rating = 12A
Power consumed = IV
= 120×12
= 1440watts
b) For vacuum cleaner:
Operating voltage is the same as that of blow dryer = 120V
Its current rating = 4.7A
Power consumed = IV
= 120×4.7
= 564watts
c) Energy used = Power consumed × time taken
Energy used = Power × time
Energy used by blow dryer = 1440×20×60
= 1,728,000Joules
Energy used up by vacuum cleaner = 564×46×60
= 564×2760
= 1,556,640Joules
Ratio of the energy used by the blow-dryer in 20 minutes to the energy used by the vacuum cleaner in 46 minutes will be 1,728,000/1,556,640 = 1.11