Cadium
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period.
Answer:
V₂ = 27 L
Explanation:
Given data:
Initial volume = 15 L
Initial temperature = 125 K
Final temperature = 225 K
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 15 L × 225K / 125 k
V₂ = 3375 L.K / 125 K
V₂ = 27 L
Answer : The correct option is (d) 1.5 g K, 0.38 g O₂
Explanation :
The molar masses of potassium and oxygen are very close to each other. Therefore we can assume them to be equal. If we assume that, then according to reaction stoichiometry, 4 moles of K are needed to react with 1 mol of O₂. Since the molar masses are assumed to be equal , we can say that the mass of potassium needed to react with that of oxygen should be 4 times the mass of oxygen.
From the given options, the only option that has less amount of K is option d.
Here, 0.38 g of oxygen needs 0.38 x 4 = 1.52 g of K. But the given mass of potassium is 1.5 g which is less. This indicates that potassium is the limiting reactant as we do not have enough potassium to completely react with all of the oxygen.
Therefore option d is the correct option