Answer:
d) It will be cut to a fourth of the original force.
Explanation:
The magnitude of the electrostatic force between the charged objects is

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the separation between the two objects
In this problem, the initial distance is doubled, so
r' = 2r
Therefore, the new electrostatic force will be

So, the force will be cut to 1/4 of the original value.
Explanation:
F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.
...
im not gonna write a research paper but this is the really easy way write global warming talk about animals the polar ice caps and water levels then for what causes it burning fossil fuels and energy plants. then finish off with its awful and we should use solar or geothermic or wind or when the time comes fusion not fission fusion makes helium from hydrogen then burylliam from helium then oxygen and silicon so on so forth instead of fissions uranium,plutonium and thorium and with radioactive waste
It must be a virtual image, because this is the only kind of image it can produce.
Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m