1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
1 year ago
12

When does a lightbulb carry more current, (a) immediately after it is turned on and the glow of the metal filament is increasing

on (b) after it has been on for a few milliseconds and the glow is steady?
Physics
1 answer:
emmasim [6.3K]1 year ago
8 0

A  lightbulb carries more current immediately after it is turned on and the glow of the metal filament is increasing; option A.

<h3>What is current?</h3>

Current refers to the flow of electric charges typically electrons.

Current flowing through a metallic material decreases with increase in temperature of the material.

This is because the resistance of the metal increases with increase in temperature.

Therefore, for a light bulb, the current flow through it will be maximum when it is just turned on because the temperature, and hence the resistance of the  filament is at its lowest.

In conclusion, current flow decreases with increase in resistance.

Learn more about current and resistance at: brainly.com/question/24858512

#SPJ4

You might be interested in
On which date is the gravitational force between Earth and the moon the greatest?
Genrish500 [490]

The gravitational forces between the Earth and Moon are greatest when the two bodies are closest together. That happens every 27.32 days, when the Moon is at the perigee of its orbit.

Even if this happened at the same time in every orbit, the date would change, because there are not 27.32 days in a month.

But it doesn't happen at the same time in every orbit ... the Moon's perigee precesses around its orbit, on account of the gravitational forces toward the Earth, the Sun, Venus, Mars, and the other planets.

3 0
3 years ago
A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30.0 kilogram · meters pe
Lina20 [59]

The final speed of the block after the collision with the obstacle is \boxed{3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The mass of the block is 6.0\,{\text{kg}}.

The initial momentum of the block is 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/ {\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The impulse imparted by the obstacle is 10\,{\text{N}} \cdot {\text{s}}.

Concept:

The block is sliding towards east and the impulse imparted by the obstacle is towards the obstacle is towards west on the block. It means that the impulse exerted by the obstacle will reduce the momentum of the block.

According to the impulse momentum theorem, the rate of change of momentum of the body is equal to the impulse imparted to the body.

The expression for the impulse momentum theorem is.

{p_f} - p{ & _i} = I               …… (1)                                    

Substitute 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} for {p_i} and - 10\,{\text{N}} \cdot {\text{s}} for I  in equation (1).

 \begin{aligned}{p_f} &= - 10\,{\text{N}} \cdot {\text{s}} + 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} \\&= 20\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

The final momentum of the block can be expressed as:

{p_f} = m{v_f}                   …… (2)                                  

Substitute 20\text{kg}\;\text{m/s} for {p_f} and 6.0\,{\text{kg}} for m in equation (2).

 \begin{aligned}20 &= 6 \times {v_f} \\ {v_f}&= \frac{{20}}{6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\&= 3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} \\ \end{aligned}

Thus, the final speed of the block after the collision with the obstacle is \boxed{3.33\;\text{m/s}}.

Learn More:

  1. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right) brainly.com/question/4033012
  2. With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward brainly.com/question/9719731
  3. Which of the following is an example of a nonpoint source of freshwater pollution brainly.com/question/1482712

Answer Details:

Grade: High School

Chapter: Impulse-momentum theorem

Subject: Physics

Keywords:  Impulse, imparted, obstacle, speed, momentum, the obstacle, impulse-momentum theorem, frictionless surface, speed of block after collision.

5 0
3 years ago
Read 2 more answers
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
andrew11 [14]

Answer:

a) v = 7.67

b) n = 81562 N

Explanation:

Given:-

- The mass of hammer-head, m = 200 kg

- The height at from which hammer head drops, s12 = 3.00 m

- The amount of distance the I-beam is hammered, s23 = 7.40 cm

- The resistive force by contact of hammer-head and I-beam, F = 60.0 N

Find:-

(a) the speed of the hammerhead just as it hits the I-beam and

(b) the average force the hammerhead exerts on the I-beam.

Solution:-

- We will consider the hammer head as our system and apply the conservation of energy principle because during the journey of hammer-head up till just before it hits the I-beam there are no external forces acting on the system:

                                   ΔK.E = ΔP.E

                                  K_2 - K_1 = P_1- P_2

Where,  K_2: Kinetic energy of hammer head as it hits the I-beam

             K_1: Initial kinetic energy of hammer head ( = 0 ) ... rest

             P_2: Gravitational potential energy of hammer head as it hits the I-beam. (Datum = 0)

             P_1: Initial gravitational potential energy of hammer head      

- The expression simplifies to:

                                K_2 = P_1

Where,                     0.5*m*v2^2 = m*g*s12

                                v2 = √(2*g*s12) = √(2*9.81*3)

                                v2 = 7.67 m/s

- For the complete journey we see that there are fictitious force due to contact between hammer-head and I-beam the system is no longer conserved. All the kinetic energy is used to drive the I-beam down by distance s23. We will apply work energy principle on the system:

                               Wnet = ( P_3 - P_1 ) + W_friction

                               Wnet = m*g*s13 + F*s23

                               n*s23 = m*g*s13 + F*s23

Where,    n: average force the hammerhead exerts on the I-beam.

               s13 = s12 + s23

Hence,

                             n = m*g*( s12/s23 + 1) + F

                             n = 200*9.81*(3/0.074 + 1) + 60

                             n = 81562 N

                               

                                                   

6 0
3 years ago
Hi, Solve for λ<br> E=hc/λ
Paul [167]

Answer:

λ=hc/E

Explanation:

E=hc/λ

Eλ=hc

λ=hc/E

4 0
3 years ago
This diagram shows two different forces acting on a skateboarder. The
ludmilkaskok [199]

Answer:

B

Explanation:

7 0
3 years ago
Other questions:
  • Calculate the flow rate of blood (of density 0.846 g/cm3 ) in an aorta with a crosssectional area of 1.36 cm2 if the flow speed
    10·1 answer
  • What is the oxidation state of a hydrogen atom bound to an iron atom.?
    11·1 answer
  • find the current to run an electrical motor that has an output of 2.1 horsepower and is 71% efficient. operates at 171 volts ans
    8·1 answer
  • An nfl linebacker can go from 0 m/s to 2.5 m/s in 2.5s. What is his acceleration?
    10·1 answer
  • 35 POINTS! Say If You Drop A Ball from 100 Centimeters. When The ball Bounces, The Ball Does Not Bounce Back Up To 100 Centimete
    6·1 answer
  • A shark is swimming at 10 m/s west when it spots some floating bait caught in some seaweed straight ahead. After 10 s, and trave
    9·2 answers
  • Which phenomenon occurs when the moon and Earth are aligned with the sun? A. Retrograde motion B. Solstice C. Equinox D. Eclipse
    15·1 answer
  • A man 6 feet tall walks at a rate of 6 feet per second away from a light that is 15 feet above the ground.
    15·1 answer
  • The three types of stress that act on Earth's rocks are compression, tension, and
    6·1 answer
  • a railway truck of mass 8000 kg travels along a level track at a velocity of 2.5 m s–1 and collides with a stationary truck of m
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!