Answer:
theoretically speaking I don't even wanna believe it's possible but if it does then then you should check for abortion
Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
Answer:
Since both start with the same vertical velocity from the same position with the same acceleration they will reach the lake at the same time.
1.7 Btu
1 watt = 3.41214 Btu/h
1watt * 1h = 3.41214 Btu/h * h
1 = 3.41214 Btu/ (watt*h)/
0.5 watt * h = 0.5 watt*h * 3.41214 Btu/(watt*h) = 1.706 Btu
Answer:

Explanation:
let
be the mass attached, let
be the spring constant and let
be the positive damping constant.
-By Newton's second law:

where
is the displacement from equilibrium position. The equation can be transformed into:
shich is the equation of motion.