Answer:
(D) It is stronger when the objects are closer.
Explanation:
Newton's universal law 9f gravitation
first one is true, there's no net force acting on it thats greater than another or making it unbalanced, if there was the object would be in some kind of motion
All scientist use meters, that way scientist can share information across country without needing to convert the data.
3. is air resistance
4. The large rock
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

Answer:
Explanation:
The first method to engage is to listen to where the sound of air in the inner Tor escaping originated and look to see if u can find it. You can then feel the escape air with your hand.
You can Put it inside a container of water and see the bubble and rotate the inner tube to pass all of it through the water
Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is
