This group is called “noble gases” because they do not react with other elements. This is because they have a full valence shell.
Answer:
The SI unit of intensity is the watt per square meter/metre (W/m^2.)
Explanation:
Intensity is equal to the power transferred per unit area. Since power is measured in watts (W) and 1 W = 1 J/s, then intensity can be viewed as how fast energy goes through a certain area.
In physics, intensity is often used when studying light, sound, or other phenomena that involve waves or energy transfer. (With waves, the power value is taken as the average power transfer over the wave's period.)
I feel like the answer would be B. The chair pushes down on the floor becuase the question says when you sit in a chair, your body exerts a downward force on the chair so it would be pushing downward meaning that the chair would also go down making it push onto the floor.
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
The standard model of particle physics classifies all known particles and documents three of the fundamental forces. A neutrino is an almost massless sub-atomic particle with no charge that only interacts with matter very weakly. Neutrinos are classified as fermions which means they have half-integer intrinsic spin.