<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use



The ball rolled a distance of
d = 12m + 20m.
But the change of position is
x = + 12m - 20m
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m