Answer:
elastic potential energy
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.
Explanation:
Average Velocity= displacement/time Av=50/0.50 Av=100
Answer:
That an item is neither moving nor staying still in a position that is building up energy.
Explanation:
Angry sound level = 70 db
Soothing sound level = 50 db
Frequency, f = 500 Hz
Assuming speed of sound = 345 m/s
Density (assumed) = 1.21 kg/m^3
Reference sound intensity, Io = 1*10^-12 w/m^2
Part (a): Initial sound intensity (angry sound)
10log (I/Io) = Sound level
Therefore,
For Ia = 70 db
Ia/(1*10^-12) = 10^(70/10)
Ia = 10^(70/10)*10^-12 = 1*10^-5 W/m^2
Part (b): Final sound intensity (soothing sound)
Is = 50 db
Therefore,
Is = 10^(50/10)*10^-12 = 18*10^-7 W/m^2
Part (c): Initial sound wave amplitude
Now,
I (W/m^2) = 0.5*A^2*density*velocity*4*π^2*frequency^2
Making A the subject;
A = Sqrt [I/(0.5*density*velocity*4π^2*frequency^2)]
Substituting;
A_initial = Sqrt [(1*10^-5)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-8 m = 69.7 nm
Part (d): Final sound wave amplitude
A_final = Sqrt [(1*10^-7)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-9 m = 6.97 nm