Answer:
Explanation:
Remark
In general, these 3rd class levers are very inefficient. Because the force distance is smaller than the load distance, you need to pull upward with more force that the weight of the load. So whatever the load is, the force is going to be much greater.
The distances are always measured to the pivot unless you are asked something specific otherwise.
Givens
F = ?
weight = 6N
Force Distance = F*d = 0.5 m
Weight Distance =W*d1 = 2 m
Formula
F*Fd = W*Wd
Solution
F*0.5 = 6 * 2 Divide by 0.5
F = 12/0.5
F = 24 N upwards
Answer:
The principle of momentum conservation states that if there no external force the total momentum of the system before and after the collision is conserved.
Since momentum is a vector, we should investigate the directions and magnitudes of initial and final momentum.
If the first ball hits the second ball with an angle, we should separate the x- and y-components of the momentum (or velocity), and apply conservation of momentum separately on x- and y-directions.
Answer:
5.5 x 10^5 N/C
Explanation:
t = 0.001 s
Δp = - 8.8 x 10^-17 kg m /s
Force is equal to the rate of change of momentum.
F = Δp / Δt
F = (8.8 x 10^-17) / 0.001 = 8.8 x 10^-14 N
q = 1.6 x 10^-19 C
Electric field, E = F / q = (8.8 x 10^-14) / (1.6 x 10^-19)
E = 5.5 x 10^5 N/C
Answer:
When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. For example, when energy is transferred to an Earth-object system as an object is raised, the gravitational field energy of the system increases. This energy is released as the object falls; the mechanism of this release is the gravitational force. Likewise, two magnetic and electrically charged objects interacting at a distance exert forces on each other that can transfer energy between the interacting objects.
Explanation:
Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion). ... A force is a push or pull that causes an object to move, change direction, change speed, or stop. Without a force, an object that is moving will continue to move and an object at rest will remain at rest.