Answer:
This list of electron configurations of elements contains all the elements in increasing order of atomic number.
To save room, the configurations are in noble gas shorthand. This means part of the electron configuration has been replaced with the element symbol of the noble gas symbol. Look up the electronic configuration of that noble gas and include that value before the rest of the configuration.
Explanation:
hope this help
Answer:B equals mass divided by volume
Explanation:I got hacks :)
Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
The new pressure would be = 4.46 atm
<h3>Further explanation</h3>
Given
V₁=6.7 L(at STP, 1 atm 273 K)
V₂=1.5 L
Required
The new pressure
Solution
Boyle's Law
At a constant temperature, the gas volume is inversely proportional to the pressure applied

P₂ = (P₁V₁)/V₂
P₂ = (1 atm x 6.7 L)/1.5 L
P₂ = 4.46 atm
Answer:
<h2>Density = 0.46 g/mL</h2>
Explanation:
Density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass = 5.52 g
volume = 12 mL
Substitute the values into the above formula and solve for the Density
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.46 g/mL</h3>
Hope this helps you