Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
The distance between two successive troughs or crests is known as the wavelength. The wavelength of the light will be 1000 nm.
How do you define wavelength?
The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.
The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.
Diffraction angle= 30⁰
Diffraction grating per mm= 250
wavelength = ?
Mathematically the equation of bright band is given by


m

Hence the wavelength of the light will be 1000 nm.
To learn more about the wavelength refer to the link;
brainly.com/question/7143261
The main activity that is involved in studying of physics is the study of natural laws. The study of physics has to do with many aspects of the universe. Physics majorly looks into the natural laws that operate in the universe and describe how they affect matter in relation to time.
Answer:
the displacement of the object is 5 units
Explanation:
The computation of the displacement of the object is shown below:
= Move to the right + move to the right - move to the left
= 6 units + 3 units - 4 units
= 9 units - 4 units
= 5 units
Hence, the displacement of the object is 5 units
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)