The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule. The force is given by the charge times the vector product of velocity and magnetic field.
Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).
Advantages include low costs and minimal labor.Water stays in the root zone, and foliage stays dry. Drawbacks to surface irrigation include potential overwatering and wasteful runoff.
Answer:
a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>
b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>
c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>
c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>