Explanation:
Bernoulli equation for the flow between bottom of the tank and pipe exit point is as follows.
= 
![\frac{(100 \times 144)}{62.43} + 0 + h[tex] = [tex]\frac{(50 \times 144)}{(62.43)} + \frac{(70)^{2}}{2(32.2)} + 0 + 40 + 60](https://tex.z-dn.net/?f=%5Cfrac%7B%28100%20%5Ctimes%20144%29%7D%7B62.43%7D%20%2B%200%20%2B%20h%5Btex%5D%20%3D%20%5Btex%5D%5Cfrac%7B%2850%20%5Ctimes%20144%29%7D%7B%2862.43%29%7D%20%2B%20%5Cfrac%7B%2870%29%5E%7B2%7D%7D%7B2%2832.2%29%7D%20%2B%200%20%2B%2040%20%2B%2060)
h = 
= 60.76 ft
Hence, formula to calculate theoretical power produced by the turbine is as follows.
P = mgh
= 
= 6076 lb.ft/s
= 11.047 hp
Efficiency of the turbine will be as follows.
=
× 100%
=
= 52.684%
Thus, we can conclude that the efficiency of the turbine is 52.684%.
boiling point - condensation point
is the answer i would choose because it makes more scene
While terrestrial biomes are shaped by air temperature and precipitation, aquatic systems are characterized by factors such as water salinity, depth, and whether the water is moving or standing. If that's what you mean?
Answer:
A
Explanation:
First, let's find the molar mass of CO₂. This is 12 + 2(16) = 44 g/mole.
Now we can write 100g * (1 mole / 44g) = 2.27 mol, or A. Hope this helps!
Answer: the answer is a netrual bond
Explanation: a netural bond happens when the number of electrons are the same as the number of protons.