Answer:
932.44 km/s
Explanation:
Given that:
The work function of the magnesium = 2.3 eV
Energy in eV can be converted to energy in J as:
1 eV = 1.6022 × 10⁻¹⁹ J
So, work function =
Using the equation for photoelectric effect as:
Also,
Applying the equation as:
Where,
h is Plank's constant having value
c is the speed of light having value
m is the mass of electron having value
is the wavelength of the light being bombarded
v is the velocity of electron
Given,
Thus, applying values as:
v = 9.3244 × 10⁵ m/s
Also, 1 m = 0.001 km
<u>So, v = 932.44 km/s</u>
Correct answer: Option D, <span>
K = 5.04 × 10^52</span>
Reason:
We know that,
Ecell =

,
where n = number of electrons = 2 (in present case)
K = equilibrium constant.
Also, Ecell = <span>+1.56 v
Therefore, 1.56 = </span>

Therefore, log (K) = 52.703
Therefore, K = 5.04 X 10^52
Answer:
a, and f.
Explanation:
To be deprotonated, the conjugate acid of the base must be weaker than the acid that will react, because the reactions favor the formation of the weakest acid. The pKa value measures the strength of the acid. As higher is the pKa value, as weak is the acid. So, let's identify the conjugate acid and their pKas:
a. NaNH2 will dissociate, and NH2 will gain the proton and forms NH3 as conjugate acid. pKa = 38.0, so it happens.
b. NaOH will dissociate, and OH will gain the proton and forms H2O as conjugate acid. pKa = 14.0, so it doesn't happen.
c. NaC≡N will dissociate, and CN will gain a proton and forms HCN as conjugate acid. pKa = 9.40, so it doesn't happen.
d. NaCH2(CO)N(CH3)2 will dissociate and forms CH3(CO)N(CH3)2 as conjugate acid. pKa = -0.19, so it doesn't happen.
e. H2O must gain one proton and forms H3O+. pKa = -1.7, so it doesn't happen.
f. CH3CH2Li will dissociate, and the acid will be CH3CH3. pKa = 50, so it happens.
The form of heat transfer taking place in the crust of the Earth would be Convection.
He thought elements that haven't been discovered belonged in the place of the gap. He could also use the atomic mass of the missing elements