Answer:
Distribution factor P = =38.33
V = 7.826 ml
Explanation:
given details:
BOD =230 mg/l
DO inital = 8.0mg/l
DO final = 2.0mg/l
we know
BOD = [DO inital -DO final] * distribution factor
230 = [8 - 2] D.F
Distribution factor P 
Distribution factor P = =38.33
THE RANGE OF WASTE WATER VOLUME IN 300 ml bottle is
distribution factor 

V = 7.826 ml
Answer:
15.65 MPa 150 times of human body internal pressure
Explanation:
Given:
- Depth of the ocean for offshore drilling d = 1 mile
Find:
Determine the pressure at that location
What would happen to an unprotected, exposed person at that depth?
Solution:
- The pressure at a certain depth of a fluid can be calculated with:
P = p_w*g*d
Where, P is the pressure , p_w is the density of water ( 997 kg / m^3 ).
- Hence @ d = 1.0 mile = 1.6 km = 1600 m:
P = 997*9.81*1600
P = 15.65 MPa
- Whereas the pressure inside a human body is 101 KPa, Pressure under ocean @ 1 mile of depth is 150 times in magnitude, enough to crush the human body!
Answer:
k = 0.1118 per min
Explanation:
Assume;
Initial number of bacteria = N0
Number of bacteria IN 'T' time = Nt
So,
![Nt=N0e^{-kt}\\\\in\ 6.2 min\\\\\\frac{N0}{2}= N0e^{-k(6.2)}\\\\ln\frac{1}{2} = -k[6.2]](https://tex.z-dn.net/?f=Nt%3DN0e%5E%7B-kt%7D%5C%5C%5C%5Cin%5C%206.2%20min%5C%5C%5C%5C%5C%5Cfrac%7BN0%7D%7B2%7D%3D%20N0e%5E%7B-k%286.2%29%7D%5C%5C%5C%5Cln%5Cfrac%7B1%7D%7B2%7D%20%3D%20-k%5B6.2%5D)
k = 0.1118 per min
Answer:
w=2.25
Explanation:
It is necessary to determine the maximum w so that the normal stress in the AB and CD rods does not exceed the permitted normal stress.
The surface of the cross-section of the stapes was determined:
A_ab= 10 mm^2
A-cd= 15 mm^2
The maximum load is determined from the condition that the normal stresses is not higher than the permitted normal stress σ_allow.
σ_ab = F_ab/A_ab
σ_allow
σ_cd = F_cd/A_cd
σ_allow
In the next step we will determine the static size: Picture b).
We apply the conditions of equilibrium:
∑F_x=0
∑F_y=0
∑M=0
∑M_a=0 ==> -w*6*0.5*6*0.75*F_cd*6 =0
==> F_cd = 2*w*k*N
∑F_y=0 ==> F_cd+F_ab - 6*w*0.5 ==>2*w+F_ab -6*w*0.5 =0
==> F_ab = w*k*N
Now we determine the load w
<u>Sector AB: </u>
σ_ab = F_ab/A_ab
σ_allow=300 KPa
= w/10*10^-6
σ_allow=300 KPa
w_ab = 3*10^-3 kN/m
<u>Sector CD: </u>
σ_cd = F_cd/A_cd
σ_allow=300 KPa
= 2*w/15*10^-6
σ_allow=300 KPa
w_cd = 2.25*10^-3 kN/m
w=min{w_ab;w_cd} ==> w=min{3*10^-3;2.25*10^-3}
==> w=2.25 * 10^-3 kN/m
<u>The solution is: </u>
w=2.25 N/m
note:
find the attached graph