Answer:
Welcome to Gboard clipboard, any text that you copy will be saved here.
Explanation:
Touch and hold a clip to pin it. Unpinned clips will be deleted after 1 hour.
Answer:
a) V(t) = Ldi(t)/dt
b) If current is constant, V = 0
Explanation:
a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.
If V represents the Voltage across the inductor
and i(t) represents the current across the inductor in time, t.
V(t) ∝ di(t)/dt
Introducing a proportionality constant,L, which is the inductance of the inductor
The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.
V(t) = Ldi(t)/dt ..................................................(1)
b) If the current flowing through the inductor is constant i.e. does not vary with time
di(t)/dt = 0 and hence the general equation (1) above becomes
V(t) = 0
Answer:
A. Identify the need, recognize limitations of current toothpaste containers, and then brainstorm ideas on how to improve the existing
Explanation:
To design an improved toothpaste container, we must identify the needs of the customer, one of the major need is to make the container attractive to the sight. This is the first thing that will prompt a customer to wanting to buy the product (The reflectance/appearance).
Then recognize the limitation of the current design, what needed change. This will help in determining what is needed to be included and what should be removed based on identified customers need.
The last step is to brainstorm ideas on how to improve the existing designs. Get ideas from other colleagues because there is a saying that two heads are better than one. This will help in coming to a reasonable conclusion on the new design after taking careful consideration of people's opinion.
Answer:
Efficent at low speeds.
Explanation:
Since water is 1,000 times more dense than air, electricity can generated from tides much more efficiently at slower speeds than wind turbines can.