Answer:
Vf = 4.40 m/s and θ = 88º
Explanation:
To solve this problem, let's look for the resultants of the force and with this we calculate the accelerations in each axis.
Let's use trigonometry to break down the forces
Sin 25 = F1x / F1
Cos 25 = F1y / F1
Fix = F1 sin 25
F1x = 1.85 sin 25
F1x = 0.78 N
F1y = 1.85 cos 25
F1y = 1.67 N
F2 = - 0.782 N j ^ (south)
F3 = - 0.750 N i ^ (west)
We write Newton's second law
X axis (East-West)
F1x - F3 = m ax
ax = (F1x - F3) / m
ax = (0.78 - (0.750)) / 0.325
ax = 0.092 m / s²
Y axis (North-South)
F1y - F2 = m ay
ay = (1.67- (0.782)) / 0.325
ay = 2.73 m / s²
Let's calculate the magnitude and direction of the acceleration
a = RA ax2 + ay2
a = RA 0.092² + 2.73²
a = 2.73m / s²
tan θ = ay / ax
θ = tan⁻¹ (2.73/0.092)
θ = tan⁻¹ 29.67
θ = 88º
We calculate the speed, notice that we use the total acceleration to be able to use the totol displacement
Vf² = vo² + 2 at D
Vf² = 0 + 2 2.73 3.55
Vf = √ 19.38
Vf = 4.40 m / s
θ = 88º
Answer & Explanation:
1 N-m = 1 Joule
So 82 kJ of energy put into the system during (i).
45 kJ of heat leaves the system, so 82 kJ - 45 kJ = 37 kJ is remaining.
(ii) requires 100 kJ of energy but only 37 kJ is available, so 100 kJ - 37 kJ = 63 kJ of heat energy must be added to the system.
U=RI Ohm's law
then R=U/I
=120/0.08
=2250Ω
hope this helps you
Because the pressure is spread over a wider surface area
Answer:
Ocean currents act as conveyer belts of warm and cold water, sending heat toward the polar regions and helping tropical areas cool off, thus influencing both weather and climate. The ocean doesn't just store solar radiation; it also helps to distribute heat around the globe
Explanation:
The first one