Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m
Yes, for balance.hope this helped.
Answer:
The cylinder’s total kinetic energy is 1.918 J.
Explanation:
Given that,
Mass = 4.1 kg
Radius = 0.057 m
Speed = 0.79 m/s
We need to calculate the linear kinetic energy
Using formula of linear kinetic energy



We need to calculate the rotational kinetic energy




The total kinetic energy is given by



Hence, The cylinder’s total kinetic energy is 1.918 J.
They are too small are never in the same place. Electrons are constantly moving in random motion within the electron cloud, making them impossible to follow.