Answer:
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Explanation:
2HBr(aq)+Ba(OH)2(aq)⟶2H2O(l)+BaBr2(aq)
We break the compounds into ions. Only compounds in the aqueous form can be turned into ions.
The ionic equation is given as;
2H⁺(aq) + 2Br⁻(aq) + Ba²⁺(aq) + 2OH⁻(aq) --> 2H2O(l) + Ba²⁺(aq) + 2Br⁻(aq)
Upon eliminating the spectator ions; The net equation is given as;
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Answer:
Neon (Ne)
Hydrogen (H)
Argon (Ar)
Iron (Fe)
Calcium (Ca)
Deuterium, an isotope of hydrogen that has one proton and one neutron.
Plutonium (Pu)
F-, a fluorine anion.
Explanation:
I got u
It does<span>, however, change the </span>mass<span> of the nucleus. </span>Adding<span> or removing </span>neutrons<span>from the nucleus are how isotopes are created. Protons carry a positive electrical charge and they alone determine the charge of the nucleus.</span>
Explanation:
the process where the acids and bases neutralize each other to form salt and water is known as neutrilazation
<span>Xe = VIII = 8 valence electrons
F = VII = 4 (7 ve) = 28 valence electrons</span>
total ve = 8 + 28 = 36 ve
<span>36 - 4(2) = 28 ve
(there are 2 electrons in each bond x 4 bonds)</span>
<span>28 - 4(6) = 4
(We assign the remaining electrons to F atoms)</span>
<span>4 - 2(2) = 0
(Therefore 4 electrons left => we have 2 lone pairs)</span>
The steric number = No. of
σ bonds + #lone pairs
= 4 σ bonds + 2 lone pairs
= 6 => d²sp³ (6 hybrid orbitals)
<span>4 bonds + 2 lone pairs
=> square planar</span>