Answer:
134K
Explanation:
Using the ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas constant (0.0821 Latm/Kmol)
T = temperature (K)
Based on the information provided, n = 1.4moles, P = 3.25atm, V = 4.738L, T = ?
3.25 × 4.738 = 1.4 × 0.0821 × T
15.3985 = 0.11494T
T = 15.3985/0.11494
T = 133.969
Approximately;
T = 134K
Specific heat is the quantity of heat required to change the temperature of 1 gram of a substance by 1 degree Celsius. It is the amount per unit mass that is required to raise the temperature by one degree Celsius. Every substance has its own specific heat and each has its own distinct value. The units of specific heat are joules per gram-degree Celsius (J/f C) and sometimes J/Kg K may also be used.
Answer:
Yes
Explanation:
By definition, the equilibrium constanct, Kc, for the reaction A ⇒ 2B is
= [A]^1 / [B]^2
Substitute [A] = 4 and [B] = 2 in the equation,
[A]^1 / [B]^2
= 4^1 / 2^2
= 1
= Kc
So yes the reaction is at equilibrium.
Answer:
yeah
Explanation:
well, probably. they kicked me out of math class because I put a live chicken in the classroom and it pooped everywhere, so I had to clean it up and bring it back where I found it (which is the side of the road.)
The correct answer is option 1. Butane and 2-butene have the same total number of carbon atoms. They both have four carbon atoms. They differ in there structure since the latter has double bonds on it. As a result of the different structure, they also have different properties.