Answer:
(a) 561.12 W/ m² (b) 196.39 MW
Explanation:
Solution
(a) Determine the energy and power of the wave per unit area
The energy per unit are of the wave is defined as:
E = 1 /16ρgH²
= 1/16 * 1025 kg/ m3* 9.81 m/s² * (2.5 m )²
=3927. 83 J/m²
Thus,
The power of the wave per unit area is,
P = E/ t
= 3927. 83 J/m² / 7 s = 561.12 W/ m²
(b) The average and work power output of a wave power plant
W = E * л * A
= 3927. 83 J/m² * 0.35 * 1 *10^6 m²
= 1374.74 MJ
Then,
The power produced by the wave for one km²
P = P * л * A
= 5612.12 W/m² * 0.35 * 1* 10^6 m²
=196.39 MW
Answer:
The correct answer is option 'c':Convection.
Explanation:
When we ignite a campfire the heat produced by combustion heats the air above the fire. As we know that if a gases gains heat it expands thus it's density decreases and hence it rises, if we hold our hands directly above the fire this rising hot air comes in contact with our hands thus warming them.
The situation is different if we are at some distance from the campfire laterally. Since the rising air cannot move laterally the only means the heat of the fire reaches our body is radiation.
But in the given situation the correct answer is convection.
Well you could always do what Hispanics do and repeat the question 2-3 times while yelling till they finally answer