A) ![2.4\cdot 10^{-16}kg](https://tex.z-dn.net/?f=2.4%5Ccdot%2010%5E%7B-16%7Dkg)
The radius of the oil droplet is half of its diameter:
![r=\frac{d}{2}=\frac{0.80 \mu m}{2}=0.40 \mu m = 0.4\cdot 10^{-6}m](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Bd%7D%7B2%7D%3D%5Cfrac%7B0.80%20%5Cmu%20m%7D%7B2%7D%3D0.40%20%5Cmu%20m%20%3D%200.4%5Ccdot%2010%5E%7B-6%7Dm)
Assuming the droplet is spherical, its volume is given by
![V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.4\cdot 10^{-6} m)^3=2.68\cdot 10^{-19} m^3](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%20%3D%20%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%280.4%5Ccdot%2010%5E%7B-6%7D%20m%29%5E3%3D2.68%5Ccdot%2010%5E%7B-19%7D%20m%5E3)
The density of the droplet is
![\rho=885 kg/m^3](https://tex.z-dn.net/?f=%5Crho%3D885%20kg%2Fm%5E3)
Therefore, the mass of the droplet is equal to the product between volume and density:
![m=\rho V=(885 kg/m^3)(2.68\cdot 10^{-19} m^3)=2.4\cdot 10^{-16}kg](https://tex.z-dn.net/?f=m%3D%5Crho%20V%3D%28885%20kg%2Fm%5E3%29%282.68%5Ccdot%2010%5E%7B-19%7D%20m%5E3%29%3D2.4%5Ccdot%2010%5E%7B-16%7Dkg)
B) ![1.5\cdot 10^{-18}C](https://tex.z-dn.net/?f=1.5%5Ccdot%2010%5E%7B-18%7DC)
The potential difference across the electrodes is
![V=17.8 V](https://tex.z-dn.net/?f=V%3D17.8%20V)
and the distance between the plates is
![d=11 mm=0.011 m](https://tex.z-dn.net/?f=d%3D11%20mm%3D0.011%20m)
So the electric field between the electrodes is
![E=\frac{V}{d}=\frac{17.8 V}{0.011 m}=1618.2 V/m](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BV%7D%7Bd%7D%3D%5Cfrac%7B17.8%20V%7D%7B0.011%20m%7D%3D1618.2%20V%2Fm)
The droplet hangs motionless between the electrodes if the electric force on it is equal to the weight of the droplet:
![qE=mg](https://tex.z-dn.net/?f=qE%3Dmg)
So, from this equation, we can find the charge of the droplet:
![q=\frac{mg}{E}=\frac{(2.4\cdot 10^{-16}kg)(9.81 m/s^2)}{1618.2 V/m}=1.5\cdot 10^{-18}C](https://tex.z-dn.net/?f=q%3D%5Cfrac%7Bmg%7D%7BE%7D%3D%5Cfrac%7B%282.4%5Ccdot%2010%5E%7B-16%7Dkg%29%289.81%20m%2Fs%5E2%29%7D%7B1618.2%20V%2Fm%7D%3D1.5%5Ccdot%2010%5E%7B-18%7DC)
C) Surplus of 9 electrons
The droplet is hanging near the upper electrode, which is positive: since unlike charges attract each other, the droplet must be negatively charged. So the real charge on the droplet is
![q=-1.5\cdot 10^{-18}C](https://tex.z-dn.net/?f=q%3D-1.5%5Ccdot%2010%5E%7B-18%7DC)
we can think this charge has made of N excess electrons, so the net charge is given by
![q=Ne](https://tex.z-dn.net/?f=q%3DNe)
where
is the charge of each electron
Re-arranging the equation for N, we find:
![N=\frac{q}{e}=\frac{-1.5\cdot 10^{-18}C}{-1.6\cdot 10^{-19}C}=9.4 \sim 9](https://tex.z-dn.net/?f=N%3D%5Cfrac%7Bq%7D%7Be%7D%3D%5Cfrac%7B-1.5%5Ccdot%2010%5E%7B-18%7DC%7D%7B-1.6%5Ccdot%2010%5E%7B-19%7DC%7D%3D9.4%20%5Csim%209)
so, a surplus of 9 electrons.