The question is incomplete. The complete question is :
To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.
Draw vectors indicating the normal force n⃗ (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.
Assume that the weight of the femur is negligible compared to the applied downward force.
Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded
Solution :
The normal force represented by N is equal to the downward force,
which is equal in magnitude but it is opposite in direction.
Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.
Answer:
Ep = 3924 [J]
Explanation:
To calculate this value we must use the definition of potential energy which tells us that it is the product of mass by the acceleration of gravity by height.

where:
Ep = potential energy [J] (units of Joules)
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 10 [m]
![E_{p} =40*9.81*10\\E_{p} = 3924 [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D40%2A9.81%2A10%5C%5CE_%7Bp%7D%20%3D%203924%20%5BJ%5D)
Hey
The formula of kinetic energy is 1/2mv^2
So it depends on mass and velocity
As mass increases , kinetic energy increase .
So option b , the first rider had more mass is correct z
Explanation:
What characteristics must the movement of a person have so that the value of the displacement is equal to the distance traveled?
Displacement is equal to the shortest path covered by an object. It is given by the difference of final position and the initial position.
Distance is equal to the total path covered by an object during the journey.
When an object moves in a straight line path, in this case, the displacement is equal to the distance traveled.
Answer:
945 j
Explanation:
You have just given the ball kinetic energy, which is given by the following equation:
KE= 1⁄2 m v2 = 1⁄2 (2.1 kg)(30 m/s)2 = 945 Joules