Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long
This took me a short while to figure out, but I am still not entirely sure if this is correct, this is just from my basic understanding of Newtons Second Law of Motion.
You have a 4kg cart with a force of 20N acting on it.
The formula for working out the acceleration is.
a=Fnet÷mass
Substitute in the information.
a=20N÷4kg
Now you solve it to give you.
a=5m/s
So now what you should be able to do is figure out that after 10 seconds the cart travelling at 5m/s would have travelled 10 metres.
This is achieved by finding out how many 5's go into 10 which is 2.
So you do 5×2 which equals 10.
The 4kg cart has travelled 10 meters in 10 seconds with a force of 20N acting upon it.
I hope that this has helped you.
Answer:
kinetic energy will be equal to 0
Explanation:
this is because at final position velocity of body will become zero.
kinetic energy eill be 8 times
Answer: The red light bends the least while the violet the most.
Explanation:
i think this is it
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.