To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



The answer is Alternating Current
D. physical property
the bonds between molecules of mercury are breaking so it's physical and it's not changing the chemical composition of the substance
Convection Current
This happens when there is a noteworthy contrast in temperature between two sections of a liquid. At the point when this temperature distinction exists, hot liquids rise and cool liquids sink, and after that streams, or developments, are made in the liquid
Answer:
Angular acceleration, is 
Explanation:
Given that,
Initial speed of the drill, 
After 4.28 s of constant angular acceleration it turns at a rate of 28940 rev/min, final angular speed, 
We need to find the drill’s angular acceleration. It is given by the rate of change of angular velocity.

So, the drill's angular acceleration is
.