Protists belong to the group eukaryotes (having their DNA enclosed
inside the nucleus). They are not plants, nimals or fungi but they act like
one. They can be in general subgroups such as unicellular algae, protozoa and
molds. They thrive in environments with little sunlight. The answer is
letter B.
The way I would explain it is quite difficult to understand, so this is what Google says. "The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted." I hope this helped.
Answer:
b. upper mantle
Explanation:
low velocity zone of the upper mantle
Answer:
See explanation below
Explanation:
You are not providing the starting material, however, I manage to find a similar question to this, so I'm gonna use it as a basis to help you answer yours.
Now let's analyze what is happening in the reaction so we can predict the final product.
We have a ketone here, reacting at first with LDA. This is a very strong base that is commonly used in reactions with ketones and aldehydes to promove a condensation. To do this, as LDA is a strong base it will occur firts an acid base reaction, substracting the most acidic hydrogen in the molecule (Which in this case, is the Beta hydrogen of the carbonile). This will cause an enolate formation.
Then, this enolate will react with the CH3I and form a new product. The final result would be a ketone with a methyl group now attached. In the picture 2, you have the mechanism and final product.
Hope this helps
Answer:
C. H2O diffuses in.
Explanation:
<em>The phospholipids-made synthetic vesicle in this case will act like a semi-permeable membrane while the solution in the interior lumen will be hypertonic to the surrounding pure water. </em>
<em>Hence, water molecules will diffuse into the lumen through the semi-permeable membrane because of the osmotic gradient that exist between the internal and the surrounding solution of the vesicle.</em>