Answer:
D.
Double replacement, CaO + Cl2O
Explanation:
Halogens are a group of elements consisting of Fluorine, Chlorine, Bromine, Iodine and Astatine. In their ionic form, they have a superscript of -1, for example, chloride ion is Cl-1. These means that they readily accept one electron in order to achieve the Octet rule. The Octet rule states that each atom must contain 8 electrons in their valence shell for it to be stable. The most stable set of elements are the noble gases. Because they already fulfill the Octet rule, they no longer take part in reactions. Halogens are also very electronegative, meaning, they attract more electrons toward them. This is also a consequence of the Octet rule.
From the choices, the answers would be:
<span>they require only one electron to complete their outer shell
they have a high electronegativity</span>
The density of an object is defined as its mass divided by its volume. Mathematically, density = Mass / Volume. The unit of density is kilogram per cubic meter, kg / m^3 or g /cm^3.
For the question given above: the
Mass = 200.0 g
Volume = 100.0 cm^3
Therefore, Density = Mass / Volume = 200 / 100 = 2
Thus, the density of the object is 2 g /cm^3.
Three complete orders on each side of the m=0 order can be produced in addition to the m = 0 order.
The ruling separation is
d=1 / (470mm −1) = 2.1×10⁻³ mm
Diffraction lines occur at angles θ such that dsinθ=mλ, where λ is the wavelength and m is an integer.
Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength.
We take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is, find the greatest integer value of m for which mλ<d.
since d / λ = 538×10⁻⁹m / 2.1×10 −6 m ≈ 3
that value is m=3.
There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
Learn more about diffraction here : brainly.com/question/16749356
#SPJ4