Answer:
Correct answer: E) (Δ[C]/Δt) = 8.37 x 10–2 M –2 s –1 [A]2 [B]
Explanation:
To determine the rate expression for the reaction it is necessary to use the initial rate method. In this is necessary to measure the initial rate (Δ[C]/ Δt) of the reaction changing the concentration of the reactants one at each time. If high concentrations of A and B are used experimentally, they will vary little from their initial value, at least during the first minutes of the reaction. Under these conditions, the initial velocity will be approximately a constant.
The general rate expression for the reaction is
(Δ[C]/Δt) = ![k.[A]^{\alpha}.[B]^{\beta}](https://tex.z-dn.net/?f=k.%5BA%5D%5E%7B%5Calpha%7D.%5BB%5D%5E%7B%5Cbeta%7D)
where <em>k</em> is the rate constant, [A] and [B] are the concentration of A and B respectively, α and β are the reaction orders of A and B respectively.
To determine the reaction orders is necessary to write the ratio between the first and the second conditions:
![\frac{v_{1}}{v_{2}} =\frac{k.[A]_{1} ^{\alpha}.[B]_{1} ^{\beta}}{k.[A]_{2}^{\alpha}.[B]_{2}^{\beta}} \\ \frac{5.81x10^{-4}}{1.16x10^{-3}} = \frac{k.{(0.215M)} ^{\alpha}.(0.150M) ^{\beta}}{k.{(0.215M)}^{\alpha}.(0.300M)^{\beta}}\\\frac{5.81x10^{-4}}{1.16x10^{-3}} =\frac{(0.150M) ^{\beta}}{(0.300M)^{\beta}}\\0.500 = 0.500^{\beta}](https://tex.z-dn.net/?f=%5Cfrac%7Bv_%7B1%7D%7D%7Bv_%7B2%7D%7D%20%3D%5Cfrac%7Bk.%5BA%5D_%7B1%7D%20%5E%7B%5Calpha%7D.%5BB%5D_%7B1%7D%20%5E%7B%5Cbeta%7D%7D%7Bk.%5BA%5D_%7B2%7D%5E%7B%5Calpha%7D.%5BB%5D_%7B2%7D%5E%7B%5Cbeta%7D%7D%20%5C%5C%20%5Cfrac%7B5.81x10%5E%7B-4%7D%7D%7B1.16x10%5E%7B-3%7D%7D%20%3D%20%5Cfrac%7Bk.%7B%280.215M%29%7D%20%5E%7B%5Calpha%7D.%280.150M%29%20%5E%7B%5Cbeta%7D%7D%7Bk.%7B%280.215M%29%7D%5E%7B%5Calpha%7D.%280.300M%29%5E%7B%5Cbeta%7D%7D%5C%5C%5Cfrac%7B5.81x10%5E%7B-4%7D%7D%7B1.16x10%5E%7B-3%7D%7D%20%3D%5Cfrac%7B%280.150M%29%20%5E%7B%5Cbeta%7D%7D%7B%280.300M%29%5E%7B%5Cbeta%7D%7D%5C%5C0.500%20%3D%200.500%5E%7B%5Cbeta%7D)
β = 1 thus, B has a first order.
Also, is necessary to write the ratio between the first and the third conditions:
![\frac{v_{1}}{v_{3}} =\frac{k.[A]_{1} ^{\alpha}.[B]_{1} ^{\beta}}{k.[A]_{3}^{\alpha}.[B]_{3}^{\beta}} \\ \frac{5.81x10^{-4}}{2.32x10^{-3}} = \frac{k.{(0.215M)} ^{\alpha}.(0.150M) ^{\beta}}{k.{(0.430M)}^{\alpha}.(0.150M)^{\beta}}\\\frac{5.81x10^{-4}}{1.16x10^{-3}} =\frac{(0.215M) ^{\alpha}}{(0.430M)^{\alpha }}\\0.250 = 0.500^{\alpha}](https://tex.z-dn.net/?f=%5Cfrac%7Bv_%7B1%7D%7D%7Bv_%7B3%7D%7D%20%3D%5Cfrac%7Bk.%5BA%5D_%7B1%7D%20%5E%7B%5Calpha%7D.%5BB%5D_%7B1%7D%20%5E%7B%5Cbeta%7D%7D%7Bk.%5BA%5D_%7B3%7D%5E%7B%5Calpha%7D.%5BB%5D_%7B3%7D%5E%7B%5Cbeta%7D%7D%20%5C%5C%20%5Cfrac%7B5.81x10%5E%7B-4%7D%7D%7B2.32x10%5E%7B-3%7D%7D%20%3D%20%5Cfrac%7Bk.%7B%280.215M%29%7D%20%5E%7B%5Calpha%7D.%280.150M%29%20%5E%7B%5Cbeta%7D%7D%7Bk.%7B%280.430M%29%7D%5E%7B%5Calpha%7D.%280.150M%29%5E%7B%5Cbeta%7D%7D%5C%5C%5Cfrac%7B5.81x10%5E%7B-4%7D%7D%7B1.16x10%5E%7B-3%7D%7D%20%3D%5Cfrac%7B%280.215M%29%20%5E%7B%5Calpha%7D%7D%7B%280.430M%29%5E%7B%5Calpha%20%7D%7D%5C%5C0.250%20%3D%200.500%5E%7B%5Calpha%7D)
α = 2 thus, A has a second order.
Therefore, the rate expression is
(Δ[C]/Δt) = ![k.[A]^{2}.[B]^{1}](https://tex.z-dn.net/?f=k.%5BA%5D%5E%7B2%7D.%5BB%5D%5E%7B1%7D)
Replacing the data of the first conditions to obtain the rate constant:
![k = \frac{v}{k.[A]^{2}.[B]^{1}} = \frac{5.81x10-4M/s}{(0.215M)^{2} .(0.150M)} =8.37x10^{-2} M^{-2}s^{-1}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7Bv%7D%7Bk.%5BA%5D%5E%7B2%7D.%5BB%5D%5E%7B1%7D%7D%20%3D%20%5Cfrac%7B5.81x10-4M%2Fs%7D%7B%280.215M%29%5E%7B2%7D%20.%280.150M%29%7D%20%3D8.37x10%5E%7B-2%7D%20%20M%5E%7B-2%7Ds%5E%7B-1%7D)