2.5X20=50g
50g should be the right answer
Mass=volumeXdenisty.
<u>Answer:</u> The molality of the solution is 0.1 m.
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute = 27.1 g
= Molar mass of solute = 27.1 g/mol
= Mass of solvent = 100 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.1 m.
Answer: They can be separated by physical processes.
Explanation: A mixture is made up of two or more substances that are not chemically combined and can be easily separated into its constituents by physical methods.
Answer:
[N₂] = 0.032 M
[O₂] = 0.0086 M
Explanation:
Ideal Gas Law → P . V = n . R . T
We assume that the mixture of air occupies a volume of 1 L
78% N₂ → Mole fraction of N₂ = 0.78
21% O₂ → Mole fraction of O₂ = 0.21
1% another gases → Mole fraction of another gases = 0.01
In a mixture, the total pressure of the system refers to total moles of the mixture
1 atm . 1L = n . 0.082L.atm/mol.K . 298K
n = 1 L.atm / 0.082L.atm/mol.K . 298K → 0.0409 moles
We apply the mole fraction to determine the moles
N₂ moles / Total moles = 0.78 → 0.78 . 0.0409 mol = 0.032 moles N₂
O₂ moles / Total moles = 0.21 → 0.21 . 0.0409 mol = 0.0086 moles O₂
1) As can be seen from any 1H NMR chemical shift ppm tables, hydrogens which have δ values from 2ppm to 2.3ppm are hydrogens from carbon which is bonded to a carbonyl group. From this, we can conclude that our hydrogens belong to the type, but from 2 different alkyl groups because of 2 different signals.
2) So, one alkyl group is CH3 and second one can be CH or CH2.
3) If we know that ratio between two types of hydrogens is 3:2, it can be concluded that second alkyl group is CH2.
4) Finally, we don't have any other signals and it indicates that part of the compound which continues on CH2 is exactly the same as the first part.
The ratio remains the same, 3:2 ie 6:4