Answer:329.72 N
Explanation:
Given
mass of ball 
velocity of ball 
glove recoil distance 
Energy associated with ball E=kinetic energy of ball



Now if an average for is applied to stop the ball then work done by this force is equal to kinetic energy of the ball


Answer:
1.875 x 10⁶ m /s .
Explanation:
Force on electron = E e where E is electric field and e is charge on electron
acceleration generated = Ee / m where m is mass of the electron .
Putting the values
acceleration generated = 5 x 1.6 x 10⁻¹⁹ / 9.1 x 10⁻³¹
= .879 x 10¹² m /s²
v² = u² + 2 as , initial velocity u = 0 , displacement s = 2 m
v² = 0 + 2 x .879 x 10¹² x 2
v = 1.875 x 10⁶ m /s .
Answer:
c) 1.0 kg
Explanation:
The mass of the stick will be located at the centre of the metre rule. Since the rock is located 0.25m from the pivot, the mass of the meter rule is also 0.25m to the Right of the support
According to law of moment
Sum of clockwise moment = sum of anti clockwise moments
Clockwise moment = M×0.25(mass of metre rule is M)
CW moment = 0.25M
Anti clockwise moment = 0.25×1
ACW moments = 0.25kgm
Equate;
0.25M = 0.25
M = 0.25/0.25
M = 1.0kg
Hence the mass of the metre rule is 1.0kg
I believe the answer is A. Have a blessed day.
Answer:
The velocity of the ball after 5 seconds will be 49 m/s
Explanation:
<em>v = final velocity</em>
<em>u = initial velocity</em>
<em>g = acceleration due to gravity</em>
<em>t = time</em>
Initial velocity of the ball = 0 (As the ball is dropped from rest )
Acceleration due to gravity = 9.8 m/s
Time taken = 5 sec
As the acceleration due to gravity is constant in both the cases we can use the equations of motion in order to solve this question
Part I :- As we already know the values of u,g,ant t we can use the first equation of motion in order to find v
Part II :- As we know the values of u, t , g we can use the second equation of motion in order to find s.
Velocity of the ball after 5 seconds
Distance covered by the ball in 5 sec