1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
2 years ago
14

000333 g fluorescein (332.32 g/mol) is dissolved in 225 ml solution of ethanol. the density of ethanol is 0.785 g/ml. what is th

e concentration of the solution in molarity (m)? how many ppm? i already
Chemistry
2 answers:
andrey2020 [161]2 years ago
8 0
1) Molarity

M = n / V
n: number of moles of solute
V: volume of the solution in liters

n = mass / molar mass = 0.000333 g / 332.32 g / mol =  1*10 ^ - 6 moles

V = 225 ml * 1 liter / 1000 ml = 0.225 liter

M = 10^-6 mol / 0.225 liter = 0.00000444 M

2) ppm

ppm = parts per million

grams of solute: 0.000333 g

grams of solution = volume * density = 225 ml * 0.785 g / ml = 176.625 g

ppm = [0.00033 g / 176.625 g] * 1,000,000 = 1.868 ppm

 

Gnoma [55]2 years ago
3 0

The concentration of the solution in molarity and ppm is \boxed{{\text{0}}{\text{.00000445 M}}} and \boxed{{\text{1}}{\text{.88 ppm}}} respectively.

Further Explanation:

The proportion of substance in the mixture is called concentration. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

{\text{Molarity of  solution}} = \frac{{{\text{Moles}}\;{\text{of}}\;{\text{solute}}}}{{{\text{Volume }}\left( {\text{L}} \right){\text{ of}}\;{\text{solution}}}}             …… (1)

The formula to calculate the moles of fluorescein is as follows:

{\text{Moles of fluorescein}} = \frac{{{\text{Given mass of fluorescein}}}}{{{\text{Molar mass of fluorescein}}}}            …… (2)

The given mass of fluorescein is 0.000333 g.

The molar mass of fluorescein is 332.32 g/mol.

Substitute these values in equation (2).

\begin{aligned}{\text{Moles of fluorescein}}&=\left( {{\text{0}}{\text{.000333 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{332}}{\text{.32 g}}}}} \right)\\&=0.000001002\;{\text{mol}} \\ \end{aligned}

Substitute 0.000001002 for the moles of solute and 225 mL for the volume of solution in equation (2).

\begin{aligned}{\text{Molarity of  solution}}&=\left( {{\text{0}}{\text{.000001002 mol}}} \right)\left( {\frac{1}{{{\text{225 mL}}}}} \right)\left( {\frac{{{\text{1 mL}}}}{{{\text{1}}{{\text{0}}^{ - 3}}{\text{ L}}}}} \right) \\&= {\text{0}}{\text{.0000044535 M}}\\&\approx{\text{0}}{\text{.00000445 M}} \\ \end{aligned}

The molarity of the solution is 0.00000445 M.

The {\text{ppm}} or parts per million is a concentration term equal to the mass of any substance divided by the mass of the solution, multiplied by {10^6}.

The formula to calculate the concentration of fluorescein in {\text{ppm}} is as follows:

{ppm}} = \left( {\frac{{{\text{mass}}\;{\text{of fluorescein}}}}{{{\text{mass}}\;{\text{of}}\;{\text{solution}}}}} \right){10^6}                      ...... (3)

The formula to calculate the density of the solution is as follows:

{\text{Density of solution}} = \frac{{{\text{Mass of solution}}}}{{{\text{Volume of solution}}}}            …… (4)

Rearrange equation (6) to calculate the mass of the solution.

{\text{Mass of solution}} = \left( {{\text{Density of solution}}} \right)\left( {{\text{Volume of solution}}} \right)            …… (5)

Substitute 225 mL for the volume of fluorescein and 0.785 g/mL for the volume of solution in equation (5).

\begin{aligned}{\text{Mass of solution}}&=\left({\frac{{{\text{0}}{\text{.785 g}}}}{{{\text{1 mL}}}}} \right)\left( {{\text{225 mL}}} \right)\\&=176.6{\text{25 g}} \\ \end{aligned}

Substitute 0.000333 g for the mass of fluorescein and 176.625 g for the mass of solution in equation (3).

\begin{aligned}{\text{ppm}}&=\left( {\frac{{{\text{0}}{\text{.000333 g}}}}{{{\text{176}}{\text{.625 g}}}}} \right){10^6}\\&= 1.8853{\text{5 ppm}}\\&\approx {\text{1}}{\text{.88 ppm}} \\ \end{aligned}

The concentration of the solution in ppm is 1.88 ppm.

Learn more:

1. Calculation of volume of gas: brainly.com/question/3636135

2. Determine the moles of water produced: brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, fluorescein, solution, volume, density, ppm, 1.88 ppm, 0.00000445 M, moles of fluorescein, mass of fluorescein.

You might be interested in
Look at the graph. Which part of the line shows a time<br> when the object was not moving?
marysya [2.9K]

Answer:

\bold \blue{b)B}

hope it helps :)

7 0
2 years ago
Read 2 more answers
6. A piece of solid gold was heated from 274K to 314K. 35.73 of energy was needed to raise the temperature.
ivanzaharov [21]

From Q = mcΔT, we can rearrange the equation to solve for mass, m = Q/cΔT. The specific heat capacity, c, of solid gold is 0.129 J/g °C. I'm assuming that the energy is given in joules, as it's not specified in the question as written.

m = Q/cΔT = (35.73 J)/(0.129 J/g °C)(40.85 °C - 0.85°C)

m = 6.92 g of gold was present  

5 0
3 years ago
What ion is part of all nucleic acids?
netineya [11]
The correct answer among the choices  is option C. The ion that is part of all nucleic acids is phosphoric acid. Nucleic acids are large biomolecules that is important for all life forms. DNA and RNA are nucleic acids. These biomolecules are made from monomers called nucleotides. Each monomer is composed of 5 carbon sugar, a nitrogeneous base and a phosphate group.
5 0
3 years ago
Is phosphorus tribromide a covalent compounds or ionic compounds
daser333 [38]

Phosphorus tribromide is a covalent compound because they share electron pairs.

6 0
2 years ago
What are the tube feet on a star fish
Snezhnost [94]
They are used to pass food to the oral mouth at the center, and can attach to surfaces.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Consider the reaction 2N2(g) O2(g)2N2O(g) Using the standard thermodynamic data in the tables linked above, calculate Grxn for t
    15·1 answer
  • Explain why we did not see distinct lines (like on an emission spectrum) when the metal salts were burned.
    12·1 answer
  • In the synthesis of thyroid hormones, iodine is attached to tyrosine amino acids in colloid, initially forming what two products
    8·1 answer
  • C2h6o how many moles of ethanol are present in a 10.0 g sample of ethanol
    13·2 answers
  • What is the best way to measure the age of the Earth and why? Explain how scientists do this.
    11·1 answer
  • The table describes the properties of four compounds.
    10·1 answer
  • When Henry mosléy came up with he's own atomic number?
    7·1 answer
  • How much heat is released if 5.4 g of steam at 105°C is condensed to liquid water
    11·1 answer
  • A beaker of water has a volume of 125mL and a density of 1.0g/mL. Calculate the mass of the water.​
    13·1 answer
  • If 8.0 g of sulfur dioxide came in contact with a cloud containing 2.2 g of oxygen, indicate the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!