By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Answer:
kinetic energy is the answer
Explanation:
kinetic energy is movement
The most useful meteorological measurement for forecasting freezing precipitation is b. radiosonde soundings
<h3>
Radiosonde </h3>
At high altitudes, radiosondes are battery-powered telemetry sensor bundles that detect altitude, pressure, temperature, relative humidity, wind (both speed and direction), and cosmic ray measurements. They are commonly taken into the atmosphere by weather balloons.
Rawindsonde is an acronym for radar wind sonde, a type of radiosonde that tracks its position as it rises through the sky to provide wind speed and direction. Another type of radiosonde is one that falls to the ground after being released from an aircraft, as opposed to being carried by weather balloons. The term "dropsondes" is used to describe this group of radiosondes. The majority of operational atmospheric data assimilation methods depend heavily on radiosondes.
Learn more about radiosonde here:
brainly.com/question/10510287
#SPJ4
The observed differences in amplitudes are due to interference between the sound waves. The decrease in amplitude is due to destructive interference of the waves and the increase in amplitude is due to constructive interference.