Answer:
It looks like... A machine that reads electric pulse and surge... Not sure though.
Explanation:
Answer:
1. Can you tell me something about yourself?
2. What are you weaknesses?
3. If you would describe yourself in one word?
Explanation: Those questions above 1, 2, and 3 are not harmful to ask your client. Bit the last two 4 and 5 are very harmful, because you don't need to be all up in they business and you don't want to put a lot of pressure on your client.
Hope this helps☝️☝☝
Answer:
Define Variables and Use List methods to do the following
Explanation:
#<em>Conjoins two lists together</em>
all_names = male_names.union(female_names)
#<em>Finds the names that appear in both lists, just returns those</em>
neutral_names = male_names.intersection(female_names)
#<em>Returns names that are NOT in both lists</em>
specific_names = male_names.symmetric_difference(female_names)
Answer:
ΔQ = 4930.37 BTu
Explanation:
given data
height h = 8ft
Δt = 8 hours
length L = 24 feet
R value = 16.2 hr⋅°F⋅ft² /Btu
inside temperature t1 = 68°F
outside temperature t2 = 16°F
to find out
number of Btu conducted
solution
we get here number of Btu conducted by this expression that s
......................1
here A is area that is = h × L = 8 × 24 = 1492 ft²
put here value we get
solve it we get
ΔQ = 4930.37 BTu
complete question
A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?
Answer:
3.03 V 0.184 W
2.499 mV 125*10^-9 W
Explanation:
First, apply voltage-divider principle to the input circuit: 1
*5
= 4.545 V
The voltage produced by the voltage-controlled source is:
A_voc*V_i = 4.545 V
We can find voltage across the load, again by using voltage-divider principle:
V_o = A_voc*V_i*(R_o/R_l+R_o)
= 4.545*(100/100+50)
= 3.03 V
Now we can determine delivered power:
P_L = V_o^2/R_L
= 0.184 W
Apply voltage-divider principle to the circuit:
V_o = (R_o/R_o+R_s)*V_s
= 50/50+100*10^3*5
= 2.499 mV
Now we can determine delivered power:
P_l = V_o^2/R_l
= 125*10^-9 W
Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.