<span>One timing problem
in using fiscal policy to counter a recession is called the “legislative lag”
it occurs between the time the time the need for fiscal action is recognized
and between the time that it is taken in action.</span>
Answer:
y(i) = h
v(y.i) = 0
Explanation:
See attachment for elaboration
If a body p with a positive charge is placed in contact with a body q (initially uncharged), then the nature of charge gained by q must be positive, because rubbing an uncharged body with a charged body or placed in contact with a positive charged body, helps gain a charge to the uncharged body.
There are a variety of methods to charge an object. One method is known as induction. In the induction process, a charged object is brought near but not touched to a neutral conducting object.
Let's know, how a element gain positive charge?
A positive charge occurs when the number of protons exceeds the number of electrons. A positive charge may be created by adding protons to an atom or object with a neutral charge. A positive charge also can be created by removing electrons from a neutrally charged object.
To learn more about Positive charge here
brainly.com/question/2903220
#SPJ4
Answer:
It is another machine that helps the main machine. Hope that helps!
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>