Answer:
A selective surface with large absorption for solar radiation and high reflectance for thermal infrared radiation was produced by use of surface oxidation of stainless steel. The surfaces were studied for use with concentrated light in a solar power plant at temperatures of 400°C and higher.
In order to investigate the relation between surface treatment and optical properties, stainless steels (AISI 304 and 430) which were submitted to different chemical and mechanical surface treatments, were used. To increase the spectral selectivity, these surfaces were treated in air and in vacuum at different temperatures and times. The optical properties of these films were investigated. Visual and infrared spectral absorptances were measured at room temperature. The thermal hemispherical emittance and absorptance were obtained by a calorimetric method at 200°C. It was noticed that these chemically and mechanically treated stainless steel surfaces have good spectral properties without further oxidations. This is very important for high temperature uses. The best values are found for samples 7 and 8 under vacuum and air. These two samples with mechanically ground surfaces retained their selectivity and specularity after several hours oxidation. One can conclude that the surface ground treatment confers good selectivity on the steel surfaces for use in concentrating solar collectors with a working temperature of 500°C.
Sample surfaces were subjected to long temperature ageing tests in order to gain some idea of the thermal stability of the surfaces. The results promise better-performing surface and the production of durable selective finishes at, possibly, lower cost than competing processes.
Explanation:
Answer:
X_cp = c/2
Explanation:
We are given;
Chord = c
Angle of attack = α
p u (s) = c 1
p1(s)=c2,
and c2 > c1
First of all, we need to find the resultant normal force on the plate and the total moment about leading edge.
I've attached the solution
Answer:
MRR = 1.984
Explanation:
Given that
Depth of cut ,d=0.105 in
Diameter D= 1 in
Speed V= 105 sfpm
feed f= 0.015 ipr
Now the metal removal rate given as
MRR= 12 f V d
d= depth of cut
V= Speed
f=Feed
MRR= Metal removal rate
By putting the values
MRR= 12 f V d
MRR = 12 x 0.015 x 105 x 0.105
MRR = 1.984
Therefore answer is -
1.944
Answer:
<h2>The Invention of the Internal Combustion Engine (ICE)</h2>
Explanation:
The internal combustion engine is an engine in which ignition and combustion take place in the engine(in one place), the invention of the ICE was an integral part of the industrial revolution, as there was increasing demand for power, and manual labor could not suffice, especially during the mid 19 century.
The ICE made it possible for tasks that demand intensive power consumption to come through to reality, it was as a result of the invention of the ICE that road transportation was made easier for mankind, as the means of transport then was the use of beast of burden, now we have cars, airplanes ship, etc, essentially the invention of ICE reduced the tedious task man would have to engage in for his daily needs