The correct answer is option a, that is, they produce ions when dissolved in water.
The acids and bases refer to the chemical components, which reacts with water. The molecules of acids dissociate to give hydrogen ions to water, while the bases dissociate to provide hydroxide ions to the water, or that takes hydrogen ions from water and leave the hydroxide ions behind.
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
Answer:
When you mix the sugar into the tea and stir, it dissolves so you can't see it. Also when you stir the sugar into the tea the taste changes and it turns sweeter.
Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.
Answer:
a. The reaction is endothermic.
Explanation:
The heat involved in a chemical reaction is given by the enthalpy change (ΔH), which is equal to the balance between the chemical bonds that are broken (release energy) and the chemical bonds that are formed (need energy):
ΔH ≅ bonds broken - bonds formed
If broken bonds > bonds formed ⇒ ΔH > 0 ⇒ endothermic reaction
Therefore, the reaction is endothermic (it requires energy).