1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
10

The slope of the line on any speed vs time graph is equal to the objects ?

Physics
1 answer:
vivado [14]3 years ago
3 0

i think its a bar graph





i hope this works

You might be interested in
The coefficient of static friction between a 3.00 kg crate and the 35.0o incline is 0.300. What minimum force F must be applied
Yakvenalex [24]

Answer:

So the minimum force is

32.2Newton

Explanation:

To solve for the minimum force, let us assume it to be F (N)

So

F=mgsinA

But

=>>>> coefficient of static friction x (F + mgcosA

=>3 x 9.8 x sin35 = 0.3 x (F + 3 x 9.8 x cos35)

So making F subject of formula

F + 24.0 = 56.2

F = 32.2N

3 0
3 years ago
Which of the following statements is true about the scientific process?
KiRa [710]
The best and most correct answer among the choices provided by your question is the third choice or letter C.
<span>The statement "Your hypothesis must be testable." is true about the scientific process.


</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
4 0
3 years ago
In a game of angry birds you launch a bird with an angle of 53 degrees to horizontal. Unfortunatly, its not a good shot and the
Alisiya [41]

Answer:

The maximum height covered is 3.25 m.

The horizontal distance covered is 9.81 m.

The total time in the air is 1.63 seconds.

Explanation:

The launch speed, u_0= 10 m/s.

Angle of launch with the horizontal, \theta = 53 ^{\circ}

So, the vertical component of the initial velocity,

u_0\sin\theta=10 \sin 53 ^{\circ}\cdots(i).

The horizontal component of the initial velocity,

u_0\cos\theta=10 \cos 53 ^{\circ}

Let, t be the time of flight, to the horizontal distance covered

D=10 \cos (53 ^{\circ})t\cdots(ii).

Not, applying the equation of motion in the vertical direction.

s= ut +\frac 1 2 at^2

Where s is the displacement in time t, u is the initial velocity and a is the acceleration.

In this case, u =10 \sin 53 ^{\circ} (from equation (i), s=0 (as the final height is same as the launch height) and a = -9.81 m/s^2 (negative sign is due to the downward direction).

\Rightarrow 0 = 10 (\sin 53 ^{\circ})t-\frac 1 2 (9.81)t^2

\Rightarrow t= \frac {2\times 10 (\sin 53 ^{\circ})}{9.81}=1.63 seconds.

So, the total time in the air is 1.63 seconds.

From equation (i),

Total horizontal distance covered is

D=10 \cos (53 ^{\circ})\times 1.63 = 9.81 m.

Now, for the maximum height, H, applying the equation of motion as

v^2=u^2+2as

Here, v is the final velocity and v=0 (at the maximum height), and h=H.

So, 0^2=(10 \sin 53 ^{\circ})^2-2(9.81)H

\Rightarrow H = \frac {(10 \sin 53 ^{\circ})^2}{2\times 9.81}

\Rightarrow H = 3.25 m.

Hence, the maximum height covered is 3.25 m.

8 0
3 years ago
Which of the following best describes an action-reaction pair? A. The Moon Pulls on Earth, and Earth pulls back on the moon. B.
Papessa [141]
An action-reaction pair would be a pair in which one of the elements exerts a force on the other element (action), and then the other element would respond to this force by exerting another force in the opposite direction (reaction).

From the given choices, we will see that:
For choice A, the moon exerts a force on the earth by pulling it (action) and the earth responds to this force by pulling the moon (reaction in opposite direction of the action).

Therefore, the correct choice would be: 
A. <span>The Moon Pulls on Earth, and Earth pulls back on the moon.</span>
4 0
3 years ago
Read 2 more answers
A body of mass 5.0 kg is suspended by a spring which stretches 10 cm when the mass is attached. It is then displaced downward an
Dominik [7]

Answer:

position as a function of time is y = 0.05 × cos(9.9)t

Explanation:

given data

mass = 5 kg

length = 10 cm = 0.1 m

displaced = 5 cm

to find out

position as a function of time

solution

we will apply here equilibrium that is

mass × g = k × length

put here value and find k

k = \frac{5*9.8}{.01}

k = 490 N/m

and ω is

ω = \sqrt{\frac{k}{m} }

ω = \sqrt{\frac{490}{5} }

ω = 9.9

so here position w.r.t  time is

y = 0.05 × cosωt

y = 0.05 × cos(9.9)t

so position as a function of time is y = 0.05 × cos(9.9)t

8 0
3 years ago
Other questions:
  • If earth rotated on an axis that was not tilted, how would this affect the seasons?
    5·2 answers
  • In Physics what type of distance is used in calculating work?
    10·1 answer
  • Help please help me with all of it I don't know nothing. bless ur hearts <br>​
    6·1 answer
  • Scott travels north 5 miles, then goes west 3 miles, and then goes south for 2 miles.
    11·1 answer
  • A lamina occupies the part of the disk x2 + y2 ≤ 49 in the first quadrant. Find the center of mass of the lamina if the density
    5·1 answer
  • 5.
    15·2 answers
  • A car, initially traveling at 81.8 mi/h, slows to rest in 7.1 s. What is the car's acceleration?
    7·1 answer
  • Which can give off more heat: a glass full of hot water, or a pitcher full of hot water that has the same temperature?
    9·2 answers
  • . Mass 1 has a momentum of 20 kg*m/s. Mass 2 has a momentum of 50 kg*m/s.
    12·1 answer
  • A student conducts an experiment in which a cart is pulled by a variable applied force during a 2 s time interval. In trial 1, t
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!