<u>Answer:</u> The boiling point of solution is 101.56°C
<u>Explanation:</u>
Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.
The equation used to calculate elevation in boiling point follows:

To calculate the elevation in boiling point, we use the equation:

Or,

where,
Boiling point of pure water = 100°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 0.52°C/m.g
= Given mass of solute (urea) = 27.0 g
= Molar mass of solute (urea) = 60 g/mol
= Mass of solvent (water) = 150.0 g
Putting values in above equation, we get:

Hence, the boiling point of solution is 101.56°C
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
your answer is c hope this helps
Answer:
1. Theoretical yield = 2.03g
2. Actual yield 1.89g
Explanation:
Let us write a balanced equation. This is illustrated below:
Zn + 2HCI —> ZnCl2 + H2
Molar Mass of HCl = 1 +35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 2 x 36.5 = 73g
Molar Mass of H2 = 2x1 = 2g/mol
1. From the equation,
73g of HCl produced 2g of H2.
Therefore, 74g of HCl will produce = (74 x 2)/73 = 2.03g
Therefore, theoretical yield = 2.03g
2. %yield = 93%
Theoretical yield = 2.03g
Actual yield =?
%yield = Actual yield /Theoretical yield x100
Actual yield = %yield x theoretical yield
Actual yield = 93% x 2.03 = (93/100)x2.03 = 1.89g
Actual yield =1.89g
<span>he accelerates when he runs away from home plate. as he reaches each base, the player accelerates by changing direction. he accelerates again when slowing down after reaching home plate.</span>