Answer:
the friction force in the reverse direction is 200 *0.4=80 N.
the net forward force acting on the box is therefore
Fnet= 100 - 80 N
= 20 N
acceleration = Fnet / mass
=Fnet *g/(weight)
=20 *9.8/200 = 0.98 m/s^2
Explanation:
Answer:
(a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Explanation:
Given that,
Angle of incidence = 30.0°
Index of reflection of glass = 1.52
(a). We need to calculate the angle of refraction for the ray inside the glass
Using snell's law


Put the value into the formula



(b). We know that,
The incident ray and emerging ray is equal then the ray will be parallel.
We need to prove that the rays in air on either side of the glass are parallel to each other
Using formula for emerging ray


Put the value into the formula



So, 
This is proved.
Hence, (a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Weight = mg, g ≈ 9.8 m/s²
Weight = 2.2 * 9.8 ≈ 21.56 N
Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm
Answer:
25 x 9/5 = 45 degrees Fahrenheit
Explanation: