Answer:
<h2>4.6 m/s²</h2>
Explanation:
The acceleration of an object given it's velocity and time taken can be found by using the formula
<h3>

</h3>
where
v is the final velocity
u is the initial velocity
t is the time taken
a is the acceleration
Since the body is from rest u = 0
From the question we have

We have the final answer as
<h3>4.6 m/s²</h3>
Hope this helps you
Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream
Explanation:
C one is the correct one according to me
The formula is P = E/t, where P means power in watts, E means energy j , and t means time in seconds. This formula states that power is the consumption of energy per unit of time.
P = 15 M / 10*60
M = mega = 10⁶
15 *10⁶ / 600
= 25000 watt
B. False. beause warm air rises up in the air so first of all there is
no warm air near the ground and second of all higher the temperature
higher will be the collision of molecules so sound will travel a bit
slower than lower temperature