Kinetic energy means movement. This means that the more something moves, the more kinetic energy it will have! And the faster something moves, the more heat it produces! Altogether, this means that the more Kinetic energy something has, the hotter it will be!
The opposite is also true. The less something moves, it will have less Kinetic energy and the colder it will get.
If you're having trouble understanding this, think of it like how the particles in water move compared to how the particles in ice move. The particles in water are free flowing and can move wherever they want. If they get colder, they won't move as much, and eventually they'll stop flowing around, forming a solid and staying colder than the water will get.
Answer:
the pressure at B is 527psf
Explanation:
Angular velocity, ω = v / r
ω = 20 /1.5
= 13.333 rad/s
Flow equation from point A to B
![P_A+rz_A-\frac{1}{2} Pr_A^2w^2=P_B+rz_B-\frac{1}{2} pr^2_Bw^2\\\\P_B = P_A + r(z_A-z_B)+\frac{1}{2} pw^2[(r_B^2)-(r_A)^2]\\\\P_B = [25 +(0.8+62.4)(0-1)+\frac{1}{2}(0.8\times1.94)\times(13.333)^2[2.5^2-1.5^2] ]\\\\P_B = 25 - 49.92+551.79\\\\P_B = 526.87psf\\\approx527psf](https://tex.z-dn.net/?f=P_A%2Brz_A-%5Cfrac%7B1%7D%7B2%7D%20Pr_A%5E2w%5E2%3DP_B%2Brz_B-%5Cfrac%7B1%7D%7B2%7D%20pr%5E2_Bw%5E2%5C%5C%5C%5CP_B%20%3D%20P_A%20%2B%20r%28z_A-z_B%29%2B%5Cfrac%7B1%7D%7B2%7D%20pw%5E2%5B%28r_B%5E2%29-%28r_A%29%5E2%5D%5C%5C%5C%5CP_B%20%3D%20%5B25%20%2B%280.8%2B62.4%29%280-1%29%2B%5Cfrac%7B1%7D%7B2%7D%280.8%5Ctimes1.94%29%5Ctimes%2813.333%29%5E2%5B2.5%5E2-1.5%5E2%5D%20%20%5D%5C%5C%5C%5CP_B%20%3D%2025%20-%2049.92%2B551.79%5C%5C%5C%5CP_B%20%3D%20526.87psf%5C%5C%5Capprox527psf)
the pressure at B is 527psf
Answer:
The work done by the steam is 213 kJ.
Explanation:
Given that,
Mass = 5 kg
Pressure = 150 kPa
Temperature = 200°C
We need to calculate the specific volume
Using formula of work done



Where,R = gas constant
T = temperature
P = pressure
=Atmosphere pressure
m = mass
Put the value into the formula


Hence, The work done by the steam is 213 kJ.
Answer:
kinetic energy at first
Explanation:
kinetic turns to potential as it gains height
Answer:
R = 0.992 Ω
Explanation:
En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.
Matemáticamente,
Resistencia = (resistividad * longitud) / Área De la pregunta;
Resistividad = 3,5 * 10 ^ -5 Ωm
longitud = 170 cm = 1,7 m
Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2
Conectando estos valores a la ecuación anterior, tenemos;
Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =
(3.5 * 1.7) / 6 = 0.992 Ω