1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lora16 [44]
3 years ago
15

suppose a wheel with a 15 inch diameter is used to turn a water valve stem with a radius of .95 inches. What is the Mechanical a

dvantage?
Engineering
1 answer:
pentagon [3]3 years ago
5 0

Answer: The answer is 7.89

You might be interested in
A coal-burning power plant generates electrical power at a rate of 650 megawatts (MW), or 6.50 × 108 J/s. The plant has an overa
Vinvika [58]

Answer:

Energy produce in one year =20.49 x 10¹⁶ J/year

Explanation:

Given that

Plant produce 6.50 × 10⁸ J/s of energy.

It produce  6.50 × 10⁸ J in 1 s.

We know that

1 year = 365 days

1 days = 24 hr

1 hr = 3600 s

1 year = 365 x 24 x 3600 s

1 year = 31536000 s

So energy produce in 1 year = 31536000 x  6.50 × 10⁸ J/year

          Energy produce in one year = 204984 x 10¹² J/year

          Energy produce in one year =20.49 x 10¹⁶ J/year

7 0
3 years ago
What is 94*738^389428394
Lady_Fox [76]

Answer:

undefined

Explanation:

3 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
Can you help me with this
Fiesta28 [93]

the function is to provide sealed combustion so that the loss of gas is minimized

6 0
2 years ago
Answer?...................
torisob [31]

Answer:

The correct option is;

c. Leaving the chuck key in the drill chuck

Explanation:

A Common safety issues with a drill press leaving the chuck key in the drill chuck

It is required that, before turning the drill press power on, ensure that chuck key is removed from the chuck. A self ejecting chuck key reduces the likelihood of the chuck key being accidentally left in the chuck.

It is also required to ensure that the switch is in the OFF position before turning plugging in the power cable

Be sure that the chuck key is removed from the chuck before turning on the power. Using a self-ejecting chuck key is a good way of insuring that the key is not left in the chuck accidentally. Also to avoid accidental starting, make sure the switch is in the OFF position before plugging in the cord. Always disconnect the drill from the power source when making repairs.

5 0
3 years ago
Other questions:
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    11·1 answer
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • A piston/cylinder contains 1.5 kg of water at 200 kPa, 150°C. It is now heated by a process in which pressure is linearly relate
    14·1 answer
  • In unguided medium (free space), the electromagnetic (EM) signal wave spreads as it leaves the transmit antenna. Since the power
    10·1 answer
  • Two parts are to be assembled in a way that if one part fails, the entire assembly fails. Each of the parts have undergone exten
    15·1 answer
  • Estimate the time it would take for such axons to carry a message from a foot stepping on a sharp object to the brain and then b
    14·1 answer
  • Heyyyyyyyyy people wrud
    7·1 answer
  • Joe, a technician, is attempting to connect two hubs to add a new segment to his local network. He uses one of his CAT5 patch ca
    9·1 answer
  • Oil, with density of 900 kg/m3 and kinematic viscosity of 0.00001 m2/s, flows at 0.2 m3/s through 500 m of 200-mm-diameter cast-
    12·1 answer
  • Hole filling fasteners (for example, MS20470 rivets) should not be used in composite structures primarily because of the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!