Answer:
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Explanation:
Given:
Mass M1 = 26 kg
Mass M2 = 5.1 kg
Distance r = 0.19 m
Find:
Gravitational force of attraction G(f)
Computation:
Gravitational force of attraction G(f) = G(m1)(m2)/r²
Gravitational force of attraction G(f) = [6.67 x 10⁻¹¹](26)(5.1)/(0.19)²
Gravitational force of attraction G(f) = 8.84 x 10⁻⁹ / 0.0361
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Answer:
Carbon moves from living things to the atmosphere. Each time you exhale, you are releasing carbon dioxide gas (CO2) into the atmosphere. Animals and plants need to get rid of carbon dioxide gas through a process called respiration. Carbon moves from fossil fuels to the atmosphere when fuels are burned.
Answer:
When an atom of sodium and an atom of fluorine combine to form the salt, sodium fluoride, an ionic bond, is formed.
Explanation:
Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g