A series circuit has only one path for current,
while a parallel circuit has more than one.
We can answer this one very quickly. From the <em>Law of Conservation of Energy</em>, we know that "Energy can't be created or destroyed.".
So that only leaves us one way to complete the sentence in this question:
"One form of energy can be <em>transformed into</em> another type of energy.
" <em>(B)</em>
Sound is an example of a mechanical wave. Mechanical waves are the kinds of waves that cannot be propagated without a medium. As such, these waves cannot travel through a vacuum, just like how sound cannot travel through space, since space is a vacuum.
Answer:
Volume of gasoline overflow(v)= 40/9 L (I.e. 4.44 L)
Explanation:
Use <u>v1</u><u>/</u><u>T1</u><u>=</u><u>v2</u><u>/</u><u>T2</u>
.....overflow(V)=v2-v1
<u>Note</u><u>;</u> <em>Take</em><em> </em><em>temperature</em><em> </em><em>in</em><em> </em><em>absolute</em><em> </em><em>scale</em><em> </em><em>or</em><em> </em><em>kelvin</em><em> </em><em>scale</em><em> </em>
Two physical systems are in thermal equilibrium if no heat flows between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially and temporally uniform.
Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as heat but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.