Answer:
196
Explanation:
subtract 24 from 220 to get your answer.
The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.
Initial velocity: 0
final velocity: 7 m/s
a = 3.6
t = ?
x = ?
(7-0)/3.6 = t
t = 1.94 s
Answer:
Explanation:
The voltage of a disconnected charged capacitor increases when the plate area is decreased.
When plate area decreases , capacitance C decreases , but charge Q remains constant .
Q = C V where C is capacitance and V is voltage .
when C decreases , V increases for keeping Q constant .
So the statement is true.
The electric field is dependent on the charge density on the plates.
This statement is true .
The voltage of a connected charged capacitor remains the same when the plate area is decreased .
For a connected capacitor , V or voltage is constant which is equal to voltage of charging battery .
So the statement is true .
Answer:
The COP of the system is = 4.6
Explanation:
Given data
Higher pressure = 1.8 M pa
Lower pressure = 0.12 M pa
Now we have to find out high & ow temperatures at these pressure limits.
Higher temperature corresponding to pressure 1.8 M pa
°c = 335.9 K
Lower temperature corresponding to pressure 0.2 M pa
°c = 262.9 K
COP of the system is given by


COP = 4.6
Therefore the COP of the system is = 4.6