Answer:
170 N
Explanation:
Since Force F = ma were m = mass = 85 kg and a = acceleration = 2.0 m/s².
So the net force on the bicycle is
F = ma = 85 kg × 2.0 m/s² = 170 N
Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J
Answer:
The current in the primary is 0.026 A
Explanation:
Using the formula
I1 = (V1/V2)*I2
we have
I1 = (6.4/120)*0.500
I1 = 0.026 A
Answer:
Radiation
Explanation:
The sun energy reaches us by Radiation.
First, you find the velocity at each component. The general equation is:
a = (v2 - v1)/t
a,x = (v2,x - v1,x)/t
-0.105 = (v2,x - 8.57)/6.67
v2,x = 7.87 m/s
a,y = (v2,y - v1,y)/t
0.101 = (v2,y - -2.61)/6.67
v2,y = -1.94 m/s
To find the final speed, find the resultant velocity by taking the hypotenuse.
v^2 = (v2,x)^2 + (v2,y)^2
v^2 = (7.87)^2 + (-1.94)^2
v = 8.1 m/s