Answer:
C) LiOH + HCl → LiCl + H₂O
General Formulas and Concepts:
<u>Chemistry - Reactions</u>
- Synthesis Reactions: A + B → AB
- Decomposition Reactions: AB → A + B
- Single-Replacement Reactions: A + BC → AB + C
- Double-Replacement Reactions: AB + CD → AD + BC
Explanation:
<u>Step 1: Define</u>
RxN A: 2Na + 2H₂O → 2NaOH + H₂
RxN B: CaCO₃ → CaO + CO₂
RxN C: LiOH + HCl → LiCl + H₂O
RxN D: CH₄ + 2O₂ → CO₂ + 2H₂O
<u>Step 2: Identify</u>
RxN A: Single Replacement Reaction
RxN B: Decomposition Reaction
RxN C: Double Replacement Reaction
RxN D: Combustion Reaction
2.258625 *10²³ oxygen atoms will be produced.
<h3><u>Explanation:</u></h3>
Decomposition reaction is defined as the type of reaction where one single reactant breaks to produce more than one product only by means of heat or other external factor.
Formula of magnesium oxide = MgO.
The molecular mass of magnesium oxide = 24 +16= 40.
So in 40 grams of magnesium oxide, number of molecules is 6.023 * 10²³.
So in 15 grams of magnesium oxide,, number of molecules is 6.023 *1023 * 15/40 = 2.258625 *10²³.
From one molecule of magnesium oxide, one oxide atom will be produced.
So number of oxide atoms with 100% yeild = 2.258625 *10²³
The answer is B. Temperate.
Answer:
If your asking why they are different because atoms are rearranged in a chemical reaction, there must be the same number of sodium atoms and chlorine atoms in both reactants and products for them to be the same.
Answer:
When you put sugar inside of a cup with water, the sugar is still visible because it's molecules have just gotten in touch with water molecules. The sugar molecules are still attracted to each other but as you stir it, it seems to disappear but not completely. When the water is stirred sugar mix with water and water molecules place themselves between the sugar ones.
Conclusion: It suggests that the sugar molecules are more attracted to water molecules which is why they easily separate from each other.