Answer:
hi! I hope your having a awesome day
Explanation:
Answer:
The Bohr model and all of its successors describe the properties of atomic electrons in terms of a set of allowed (possible) values. Atoms absorb or emit radiation only when the electrons abruptly jump between allowed, or stationary, states. Direct experimental evidence for the existence of such discrete states was obtained (1914) by the German-born physicists James Franck and Gustav Hertz.
Explanation:
Answer: How does cellar respiration the law of converter of mass and the law of conversion of energy?
Explanation: Conservation of mass is the first law of thermodynamics. This states that energy is conserved in all processes, since it cannot be created nor destroyed. This applies to photosynthesis and cellular respiration.
Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
Use PV=nRT to solve the equation. You need to solve for n (number of moles). Don’t forget to convert the temperature to kelvins by adding 25+273. Use 0.082057 for R.