Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.
Answer:
22 km/h
Explanation:
Given that,
Speed of Xavier, v = 14 km/h
He tosses a set of keys forward on the ground at 8 km/h, v' = 8 km/h
We need to find the speed of the keys relative to the ground. Let it is V.
As both Xavier and the keys are moving in same diretion. The relative speed wrt ground is given by :
V = v+v'
V= 14 + 8
V = 22 km/h
So, the speed of the keys relative to the ground is 22 km/h.
To calculate for the force in a spring, we use Hooke's Law which relates force and the displacement of the spring. It is said that the force is directly proportional to the displacement. So, it will have the equation F = kx where k is a constant and it is the spring constant.
F = kx
F = 45 N/m (0.03)
F = 1.35 N