Answer:
C. Both a and b
Explanation:
Firstly, persons and objects in a moving plane as described in this question, are moving at the same speed as the plane even if there is no individual movement of these objects.
However, this question describes a person sitting still in a moving plane. This means that;
- The person is motionless in relation to everything in the plane i.e the person is not moving even if other things in the plane are.
- The person is in motion compared to everything on the ground i.e. the person is moving at the same speed as the plane, hence, in comparison with the ground, the person is moving.
Therefore, options A and B are correct
1 hour = 3600 seconds.
Energy dissipated = I²Rt = 8²×20×3600 = 4608000 J
Magnets are attracted when each of the different sides, most commonly known as "North" and "South", are facing each other. They repel when North and North, or South and South are facing each other.
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2