Answer:
See explanation and image attached
Explanation:
The Gilman reagent is a lithium and copper (diorganocopper) reagent with a general formula R2CuLi. R is an alkyl or aryl group.
They are useful in the synthesis of alkanes because they react with organic halides to replace the halide group with an R group.
In this particular instance, we intend to synthesize propylcyclohexane. The structure of the lithium diorganocopper (Gilman) reagent required is shown in the image attached to this answer.
Answer:
Explanation:
Combustion reaction is given below,
C₂H₅OH(l) + 3O₂(g) ⇒ 2CO₂(g) + 3H₂O(g)
Provided that such a combustion has a normal enthalpy,
ΔH°rxn = -1270 kJ/mol
That would be 1 mol reacting to release of ethanol,
⇒ -1270 kJ of heat
Now,
0.383 Ethanol mol responds to release or unlock,
(c) Determine the final temperature of the air in the room after the combustion.
Given that :
specific heat c = 1.005 J/(g. °C)
m = 5.56 ×10⁴ g
Using the relation:
q = mcΔT
- 486.34 = 5.56 ×10⁴ × 1.005 × ΔT
ΔT= (486.34 × 1000 )/5.56×10⁴ × 1.005
ΔT= 836.88 °C
ΔT= T₂ - T₁
T₂ = ΔT + T₁
T₂ = 836.88 °C + 21.7°C
T₂ = 858.58 °C
Therefore, the final temperature of the air in the room after combustion is 858.58 °C
Answer:
1.Most metal oxides are insoluble in water but some of these (e.g. Na2O.
Explanation:
2.: (i) A hissing sound is observed.
1.ii) The mixture starts boiling and lime water is obtained.